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Abstract: In this paper, we propose an improved quantum-behaved particle swarm optimization (QPSO), 

introducing chaos theory into QPSO and exerting logistic map to every particle position X(t) at a certain 

probability. In this improved QPSO, the logistic map is used to generate a set of chaotic offsets and produce 

multiple positions around X(t). According to their fitness, the particle's position is updated. In order to further 

enhance the diversity of particles, mutation operation is introduced into and acts on one dimension of the 

particle's position. What's more, the chaos and mutation probabilities are carefully selected. Through several 

typical function experiments, its result shows that the convergence accuracy of the improved QPSO  is better 

than those of QPSO, so it is feasible and effective to introduce chaos theory and mutation operation into QPSO. 

Keywords: Particle swarm optimization, Quantum-behaved particle swarm optimization, Chaos theory, 

Logistic Map, Mutation operation comma 

 

I. INTRODUCTION 
Particle swarm optimization technique is considered as one of the modern heuristic algorithms for 

optimization introduced by James Kennedy and Eberhart[1,2] in 1995. It is based on the social behavior 

metaphor[1] and a population-based optimization technique. As an alternative tool of genetic algorithms, it has 

gained lots of attention from various of optimal control system applications. PSO is a stochastic search 

technique which has less memory requirement, meanwhile it can compute more effectively and easily than other 

evolutionary algorithms. In the iterative process, PSO has memory, i.e., every particle remembers its best 

solution as well as the group's best solution. So PSO is well suited to tackle dynamical problems. But it's very 

easy to fall into the local extreme point, which is called as premature. 

In 2004, QPSO is proposed by J.Sun[3], which is an improvement of standard PSO algorithm from 

quantum mechanics. In QPSO, particles state equations are structured by wave function, and each particle state 

is described by the attractor p(t) and  delta trap characteristic length L(t), which is determined by the mean-

optimal position(MP). Because MP enhances the cooperation between particles and particles' waiting effort for 

each other, QPSO can prevent particles trapping into local minima. But the convergence speed of QPSO is slow 

and convergence accuracy is still low. So many improved methods for QPSO have been proposed. Yang[4] 

proposed  a hybrid quantum-behaved particle swarm optimization based on cultural algorithm and differential 

evolution, which improved the QPSO's performance. Wang[5] introduces Gaussian disturbance into QPSO, 

which can  effectively prevent the stagnation of the particles and make them escape the local optimum easily. 

Su[6] integrates  simulated annealing into QPSO, and the improved QPSO can avoid the default of QPSO to fall 

into local extremum. Long[7] propose two improved QPSO algorithms integrating selection mechanism, which 

is exerted on the global best position to improve the search ability of the QPSO algorithm. Zhou[8] propose a 

revised QPSO (RQPSO) technique with a novel iterative equation, which helps prevent the evolutionary 

algorithms' tendency to be easily trapped into local optima as a result of rapid decline in diversity.  

In this paper, we introduce chaos theory into QPSO and let logistic map generate a set of chaotic 

offsets for every particle at a certain probability, which are exerted on X(t) to produce multiple positions for 

updating each particle position. To enhance further the diversity of the population, the mutation operator in 

genetic algorithm is acted on particle position. Then the feasibility and effectiveness of the improved QPSO are 

examined by several typical functions. 

 

II. REVIEW OF QPSO ALGORITHM AND CHAOS THEORY 
 

2.1 QPSO algorithm 

QPSO is a complex nonlinear system, and accords to state superimposed principle. Hence, quantum 

system possesses more states, and is an indeterminate system without determinate tracks, thus each particle can 

appear in arbitrary position in seeking space according to some probability, which is favorable in terms of the 

global convergence and shaking off the local extremum. In swarm, each particle has a position vector (Xi(t)) and 

a current local optimal position(Pi(t)) encountered by oneself, and the swarm has a current global optimal 

position(G(t)) encountered by the whole swarm. 
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In QPSO algorithm, the particle's velocity vector (Vi(t)) is removed and the position(Xi(t)) of each 

particle can be updated with eq.(1-3). 

DdtGttPttp
didid

,...,2,1),())(1()()()(                                       (1) 

)/)(,...,/)(,/)(()(
11

2
1

1 



M

i
iD

M

i
i

M

i
i

MtPMtPMtPtMP                               (2) 

))(/1ln()()()()1( tutXtMPtptX
ididdidid

                               (3) 

where ))(),...,(),(()(
21

tptptptp
iDiii

  is the ith particle's attractor, M expresses the colony size, 
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 are Uniformly distributed random numbers with a scope from zero to one,  is the 

compressing-expansive factor, which is used to control the convergence speed. 

 

2.2 Chaos theory 

The chaotic state is a very common phenomenon in nonlinear systems and exists widely in the natural 

and social phenomena, their behavior is complex and pseudo-random. But the chaotic process, which seems to 

be confusion, is not entirely chaotic and exists the inherent fine regularity. 

The logistic map is a very simple chaotic system , which is applied widely. Its definition is as following. 
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Where 
k

z  is a real-valued sequence and their values are between zero and one,   is chaotic 

parameter. 

When the value of   is 3.571448, logistic map begins to enter a chaotic state. Some studies have 

shown that logistic map has been in a chaotic state when   values between 3.571448 and 4, and the interval 

[3.571448,4] known as the chaotic region of logistic map. For any given initial value 
0

z , the sequence }{
k

z  

has chaotic characteristics. According to eq.(4), the value of 
0

z  can't be taken from the set 

}1,75.0,5.0,25.0,0{A   when   is 4, and the items of set A are called fixed-points. 

  

III. MPROVED QPSO WITH LOGISTIC MAP 
In QPSO algorithm, the waiting effect among particles with MP can prevent it prematurely to trap into 

local minima, but its convergence speed is slow and convergence accuracy is still low. In order to further 

improve the convergence accuracy of QPSO, we let logistic map generate a set of chaotic offsets, which is 

exerted on each particle's current position X(t). Based on these offsets, a set of positions are produced around 

X(t) and are used to update each particle's position. The improved QPSO with chaos theory exerting on X(t) is 

denoted as CX-QPSO. 

 

3.1 Logistic map exerting on particle's position 

In QPSO, each particle generates their own next-generation iterative position according to MP and its 

attractor )(tp
i

, so the iterative speed will be slowed down. In addition, the iterative precision of QPSO is not 

very high. In order to better control the particle iterative process, the chaos theory is introduced in QPSO. Firstly, 

generating the ith particle's initial iterative position )(0 tX
i

 based on eq.(3); Secondly, generating chaotic offset 

sequence },...,2,1),({ Hht
h

  with logistic map; Thirdly, constituting },...,2,1),({ HhtX h

i
 based on 

chaotic offset sequence; finally, determining the ith particle's iterative position based on fitness values of  

},...,1,0),({ HhtX h

i
 . 

During chaotic thinking is integrated into the CX-QPSO algorithm, the ith particle's current position 

)(0 tX
i

 is not looked as the initial value of the chaotic sequence, but to let the logistic chaotic system generate a 

chaotic offset sequence },...,2,1),({ Hht
h

 . Suppose the problem is D-dimensional, and let PC be the 

chaotic probability and C be chaotic offset factor, the chaotic operator is as following. 

 

Chaotic Operator: 

Step 1  Set the number of the ith particle's positions: Ni=1; 

Step 2 Generate rc randomly between zero and one, if rc <PC then 

Step 2.1 Use the random function to generate D random numbers in [0,1], and random constitute a D-

dimensional vector R1(t) at the tth generation during the iterative process according to eq.(5). 
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 Step2.2 Let R1(t) as the initial value, and generate the chaotic sequence 
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Step 2.5 Renew the number of the ith particle's positions: Ni=1+H. 

Step 3Evaluate each position in }1,...,0),({ 
i

h

i
NhtX  with fitness function, and determine the ith 

particle's iterative position based on following equation. 
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3.2 Mutation operator 

With the iteration process of CX-QPSO, the diversity of particle groups gradually loses. In order to 

prevent the swarm to premature converge prematurely to the local extreme points, mutation operator of the 

genetic algorithm is embedded into the CX-QPSO, which can enhance the diversity of the population, and 

improve the algorithm global convergence. 

In CX-QPSO, each particle's position is looked directly as a chromosome which adopts real coding, 

and the mutation operator acts on only one dimension of particle's position which is selected randomly. Let Pm 

be the probability of mutation, the mutation operator is as following. 

Mutation Operator: 

Step 1 Generate rm randomly between zero and one; 

Step 2 if rm < Pm then 

Step 2.1 Generate rd randomly between zero and one, and constitute the variation dimension based on 

eq.(10). 

 Drd
d
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Step 2.2 Generate rv randomly between zero and one, and act mutation to the dth dimension of the ith 

particle's position according to eq.(11). 
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Where Ud and Ld are the upper and lower of the dth dimension. 

Step 2.3 Update the ith particle's Pi(t). 

 

3.3 Algorithm of CX-QPSO 

Assuming that the colony size is M  and the largest number of iterations is T, CX-QPSO algorithm is 

described as following. 

Step 1Initialization : randomly generate M particles' Xi(0),i=1,...,M; 

Step 2 Update each particle's optimal position Pi(0) and get whole swarm's optimal position G(0); 

Step] Carry out iterative computation of T generations; 

Step 3.1 Let t equal to 1; 

Step 3.2  Compute  MP(t)  based on eq.(2); 

Step 3.3 Execute the tth generation iteration; 

Step 3.3.1 Let i equal to 1; 

Step 3.3.2 Compute the ith particle's pi(t) based on eq.(1); 

Step 3.3.3 generate the ith particle's initial iterative  position )(0 tX
i

 with eq.(3); 

Step 3.3.4 Carry out Chaotic Operator; 

step 3.3.5  Carry out Mutation Operator; 

Step 3.3.6 Update each particle's optimal position Pi(t) and get whole swarm's optimal position G(t); 

Step 3.3.7 Let i=i+1, if  i M   then goto  Step3.3.2, else goto Step3.4  endif; 

Step 3.4  Let t=t+1, if  t T   then  goto  Step3.2,  else  goto  Step4  endif; 

Step 4  Iteration is over, G(T) is solution for problem with CX-QPSO. 
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IV. DETERMINING THE CHAOTIC PROBABILITY AND MUTATION PROBABILITY 
In CX-QPSO, the values of chaotic probability PC and mutation probability Pm will product a great 

impaction on the performance of CX-QPSO, the following experimental scheme is designed to determine their 

values. 

 

4.1 Experimental scheme 

To determine the appropriate parameter values, the following function is selected for analysis by many 

groups of test parameters. The selected function is Rosenbrock as following. 
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The admissible range of the Rosenbrock's variable is [-30,30]
n
, and the optimum is 0. 

In the testing process, there are nine sets for colony size M, function dimension D and iterative times T, 

which are shown in Table 1. 

Table 1. The nine kinds of test parameter sets for CX-QPSO 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 

M 20 20 20 40 40 40 60 60 60 

T 1000 1500 2000 1000 1500 2000 1000 1500 2000 

D 10 20 30 10 20 30 10 20 30 

The compressing-expansive factor  is recommended from Sun[8] with a linearly decreasing way 

based on following equation. 

221
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Where  1 and  2 are the upper and lower bounds of the compressing-expansive factor. According to 

literature[9], their values are 1.0 and 0.5. 

In chaotic operator, there are double parameters: H and C, which need to be fixed. In CX-QPSO, we 

let H be equal to 4 and C be equal to )(00005.0
dd

LU  . 

In the process of testing CX-QPSO for optimizing the Rosenbrock function, through the analysis of 

preliminary experimental data, there are twelve sets of parameter values for chaotic probability and mutation 

probability, which are listed in Table 2. 

 

Table 2. Twelve sets of parameter values for PC and Pm 
 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Pm 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 

PC 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 

 

4.2 Analyzing CX-QPSO performance with the experimental scheme 

According to Table 1 and Table 2 parameter sets, for each set of parameters, we execute CX-QPSO in 

60 dependent runs, and take the mean results as the optimal results, the results are listed in Table 3. 

 

Table 3. The optimal results of CX-QPSO with C1- C12 for Rosenbrock 
 

 s1 s2 s3 s4 s5 s6 s7 s8 s9 

C1 0.6804  9.8793  26.1921  0.4810  2.6538  8.8743  0.9671  6.4975  17.2280  

C2 0.5192  11.2186  28.4347  0.6791  3.4549  13.5775  0.9689  5.7558  8.1765  

C3 0.7937  7.6274  29.7926  0.8374  2.4708  9.0879  0.9734  6.7084  13.2653  

C4 0.8258  10.4184  21.7804  1.2793  2.2014  11.4071  1.0322  4.2412  11.1890  

C5 2.2226  8.8002  24.8689  0.8443  2.3211  11.6877  0.9001  4.6745  11.0871  

C6 0.4232  6.6761  20.8133  0.5640  2.7287  9.5709  0.7960  3.7020  8.6876  

C7 0.3227  6.5968  30.3435  1.9188  3.3879  10.5506  0.8550  6.0181  9.7695  

C8 0.6255  9.5737  24.3873  0.5584  2.2847  10.7289  0.7347  5.4774  15.5790  

C9 0.6317  7.6931  21.6881  0.6603  2.3779  8.3043  0.9305  3.8305  17.7253  

C10 0.6316  7.5281  22.2506  0.6005  2.9128  7.7188  0.9968  4.9390  12.8217  

C11 0.6583  6.4127  21.0082  0.5549  2.9868  11.4760  0.8682  4.1207  12.9143  

C12 1.9256  12.6698  20.0616  0.6209  2.3545  10.5419  0.8746  4.4135  12.3929  

QPSO 7.3711  34.3630  59.6210  2.2314  6.5903  23.6340  1.7677  9.2751  21.3420  
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In order to analyze the performance of the CX-QPSO algorithm in each parameter set of  PC and Pm, 

we compare one result to other fifteen results with same parameter values of  M and T and D. The evaluating 

processes are as following. 

Firstly, computing the maximum and minimum values of each group results by CX-QPSO at different 

PC and Pm based on eq.(13). 
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Where dij is the optimal result by CX-QPSO at the paramer set of Ci and sj. 

Secondly, calculating the performance factor of all of optimal results based on the maximum and 

minimum values of each group results with eq.(14). 
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Thirdly, summary of performance factor under each parameter PC and Pm, and get the optimal 

parameter set of  PC and Pm  with eq.(15). 
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Table 4. The performance factor of CX-QPSO with  C1- C12 
 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 Ei 

C1 0.1883  0.5540  0.5962  0.0000  0.3609  0.1972  0.7811  0.9299  0.9479  4.5556  

C2 0.1034  0.7681  0.8144  0.1378  1.0000  1.0000  0.7872  0.6831  0.0000  5.2940  

C3 0.2479  0.1941  0.9464  0.2479  0.2149  0.2337  0.8024  1.0000  0.5329  4.4202  

C4 0.2648  0.6402  0.1672  0.5553  0.0000  0.6295  1.0000  0.1793  0.3155  3.7518  

C5 1.0000  0.3816  0.4676  0.2527  0.0955  0.6774  0.5559  0.3235  0.3048  4.0589  

C6 0.0529  0.0421  0.0731  0.0578  0.4206  0.3161  0.2059  0.0000  0.0535  1.2220  

C7 0.0000  0.0294  1.0000  1.0000  0.9466  0.4833  0.4042  0.7704  0.1668  4.8008  

C8 0.1594  0.5052  0.4207  0.0539  0.0665  0.5138  0.0000  0.5905  0.7752  3.0852  

C9 0.1626  0.2046  0.1582  0.1247  0.1408  0.0999  0.6582  0.0427  1.0000  2.5918  

C10 0.1626  0.1783  0.2129  0.0831  0.5676  0.0000  0.8810  0.4115  0.4865  2.9834  

C11 0.1766  0.0000  0.0921  0.0514  0.6266  0.6413  0.4485  0.1393  0.4962  2.6719  

C12 0.8437  1.0000  0.0000  0.0973  0.1222  0.4819  0.4700  0.2367  0.4416  3.6932  

 

The values of eij and Ei are computed and are listed in Table 4. From Table 4, the optimal results of 

CX-QPSO for Rosenbrock are much better than those of QPSO  under all 12 kinds of value combinations of the 

chaotic and mutation probability. According to the evaluation criteria with eq.(13-15), the performance factors 

of  CX-QPSO with C6 is less than two, and its value is close to 1.  Because E6 is smallest among twelve 

performance factors,  the value combinations of the chaos and mutation probability can take C6 while CX-

QPSO is used to resolve optimal problems. In the following algorithm testing process, the chaotic probability PC 

and mutation probability  Pm are both 0.3 for CX-QPSO. 

 

V. ALGORITHM TESTING 
In order to further compare the feasibility and performance of CX-QPSO at parameter set C6 to those 

of QPSO, in this section, we will adopt following three nonlinear benchmark testing functions, which are 

commonly used in [10,11,12], to examine CX-QPSO's feasibility and performance. These functions, the 

admissible range of the variable and the optimum are summarized in following. 

A. Rastrigin function 





n

i
ii

xxxf
1

2

2
)10)2cos(10()(   

The admissible range of the Rastrigin's variable is [-5.15,5.15]
n
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B. Griewark function 
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The admissible range of the Griewark's variable is [-600,600]
n
, and the mini-optimum is 0. 
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C. Schaffer function 
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The admissible range of the Schaffer's variable is  [-100,100]
 n
, and the min-optimum is 0. To evaluate 

the performance of CX-QPSO, QPSO is looked as the reference algorithm. CX-QPSO and QPSO will be used to 

optimize those given testing functions with parameter sets in Table 1, and the chaotic probability PC and 

mutation probability Pm of CX-QPSO are both 0.3. CX-QPSO and QPSO for each testing function are operated 

60 times independently, and the average values are used as the optimal results. The optimization results for 

testing functions are listed in Table 5.  

 

Table 5.  The optimal results of CX-QPSO and QPSO for four testing functions 
 

Function f1 f2 f3 f4 

method QPSO CX-QPSO QPSO CX-QPSO QPSO CX-QPSO QPSO CX-QPSO 

s1 7.3711 0.4232 7.2035 0.2997 0.1218 0.0892 0.0382 0.0292 

s2 34.3630 6.6761 22.6054 2.8452 0.0566 0.0352 0.0969 0.0820 

s3 59.6210 20.8133 42.4250 7.7982 0.0955 0.0238 0.1741 0.1243 

s4 2.2314 0.5640 5.0146 0.0955 0.0871 0.0693 0.0289 0.0175 

s5 6.5903 2.7287 16.5163 3.0742 0.0151 0.0150 0.0646 0.0475 

s6 23.6340 9.5709 35.2215 9.0103 0.0180 0.0141 0.1086 0.0908 

s7 1.7677 0.7960 3.8804 0.1997 0.1027 0.0693 0.0218 0.0157 

s8 9.2751 3.7020 14.6060 2.6735 0.0173 0.0171 0.0515 0.0461 

s9 21.3420 8.6876 30.3064 9.3525 0.0123 0.0106 0.0908 0.0727 

 

To further compare the performance of QPSO and CX-QPSO, the iterative processes of four functions 

with QPSO and CX-QPSO are compared at s6 and C6 parameter set, and the comparison is shown in Figure 1. 
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Fig1. Evolution of average fitness of four functions by QPSO and CX-QPSO  with s6 and C6 
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Based on Figure 1, in the early stages of the iterative process, the iterative speed of QPSO is faster than 

CX-QPSO for Rastrigin, but its convergence prematurely stop, thus the convergence accuracy of the CX-QPSO 

is ultimately much better than that of QPSO. For the other three testing functions, the iterative speed and 

accuracy of CX-QPSO are far superior to QPSO. For four nonlinear testing functions, the optimal results of CX-

QPSO are far superior to those of QPSO from Table 5. So CX-QPSO is feasible and the performance of CX-

QPSO is better than QPSO. 

 

VI. CONCLUSIONS 
In order to improve the convergence rate and convergence precision of QPSO, this paper proposes  an 

improved QPSO algorithm(CX-QPSO), which integrates Chaos theory into QPSO and let logistic map act on 

every particle's position. In order to prevent the swarm to premature converge prematurely to the local extreme 

points, mutation operator is embedded into CX-QPSO. Through designing testing scheme and testing CX-QPSO 

algorithm for Rosenbrock, we attained the appropriate chaos and mutation probability which are both 0.3. From 

the experimental results, CX-QPSO is far superior to QPSO, so CX-QPSO is effective and feasible. 
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