
International Journal of Engineering Inventions 

e-ISSN: 2278-7461, p-ISSN: 2319-6491 

Volume 6, Issue 11 [November. 2017] PP: 50-55 

www.ijeijournal.com                                                      Page | 50 

Bivariate Weibull Chi-squaremodel based on Gaussian copula 
 

MervetKhalifahAbd Elaal
(1,2)

 
1
King Abdulaziz University Department of Statistics, Jeddah, Saudi Arabia 

2
Al-Azhar University, Department of Statistics, Cairo, Egypt 

 

Abstract: The Weibull distribution is widely used as a lifetime distribution in many fields such as social 

scienceandreliabilityengineering. The aim of this paper is to introduce anew 

bivariateWeibullChi-squaredistribution based on Gaussian copula that is a popular used in various 

applications like econometrics and finance. We explainthe goodness of fit test for copula and use both 

parametric and semi-parametric methodsto estimate the model parameters. Finally, Simulationissuggested to 

illustrate methods of inference and examine the satisfactory performance of the proposed distribution. 
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I.    Introduction 
Recently, there has been an increased interest  in defining new generators for univariate  

continuous families of distributions by introducing one or more additional shape parameter(s)  

to the baseline distribution.  For instance, Cordeiro,et al. [4],Bourguignon et al. [3] proposed a 

generator of distributions called the Weibull-Gclass, Nadarajahet al.[8], and among others. The 

class of Weibull G distributions (WG) has received an increasing amount of attention in recent years. Many 

studiesconducted based on the properties and inferences of Weibull G distributions with a consideration to their 

applications. In this paper, we introduce a bivariate Weibull Chi-square distribution in the dependence 

structure and illustrate its applicability. 

The(WG) probability density function (PDF) has the following 

𝑓 𝑡, 𝛼, 𝛽, 𝛿 =
𝛼

𝛽𝛼

𝑔(𝑡,𝛿)

1−𝐺(𝑡,𝛿)
 −

𝑙𝑜𝑔  1−𝐺(𝑡,𝛿) 

𝛽
 
𝛼−1

𝑒𝑥𝑝  −  −
𝑙𝑜𝑔  1−𝐺(𝑡,𝛿) 

𝛽
 
𝛼

 ,      𝑡 ≥ 0        (1)  

where𝐺 𝑡, 𝛿 and 𝑔(𝑡, 𝛿), are Cdfand PDFof any baseline distribution depends on a parameter vector  𝛿, t is in 

the range of g(t, 𝛿), β > 0 is the scale parameter and 𝛼> 0 is the shape parameter. The  (WG) distributionfunction 

(Cdf)is given by 

𝐹 𝑡, 𝛼, 𝛽, 𝛿 = 1 − 𝑒𝑥𝑝   −
𝑙𝑜𝑔  1−𝐺 𝑡,𝛿  

𝛽
 
𝛼

 ,                       𝑡 ≥ 0                                           (2) 

Various Class Weibull G distributions have been discussed such as Weibull Pareto distribution by 

Alzaatreh, et al. [2].Copulas are a general tool to construct multivariate distributions and measure the 

dependence structure between random variables. The paper of Abd elaal [1] provided several methods of 

constructing bivariate distributions with copula functions.The main aim of this article is to introduce bivariate 

Weibull Chi  sq uare  (BWCH) model based on the most used copula function named Gaussian copula with a 

suitable organization. The paper is organized as follows. Section 2presents the bivariateWeibull Chi-square 

(BWCH) model based on Gaussian copula function. The maximum likelihood estimates (MLEs) for the model 

parameters are demonstrated in Section 3. In Section 4, the flexibility of the model is explained. Finally, the 

performance of the suggested model using a simulation data is discussed Section 5. 

 

II.   Bivariate Weibull Chi-square  distribution based on Gaussian copula 

Suppose  tha t  𝑔 𝑡  i s  Chi-square distribution .  We have  g( t ; r )  =  2
−
𝑟
2

Γ 
𝑟
2 
𝑡
𝑟
2−1 exp −𝑡

2
 ,  𝑡, 𝛼, 𝛽, 𝑟 >

0, and  G( t ; r )  i s  
1−Γ 𝑡,𝑟2 

Γ 𝑟2 
,   where Γ 𝑡, 𝑟

2
    𝑖𝑠  

𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑔𝑎𝑚𝑚𝑎 and then the  Weib ul l -  Chi-square  (WCH) d is t r ibut ion PDF and   cd f  

distribution are  given by re spec t ive ly  
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𝑓 𝑡, 𝛼, 𝛽, 𝑟 =

𝛼  2
−
𝑟
2

Γ(
𝑟
2)
𝑡
𝑟
2−1 exp −𝑡

2
 

𝛽𝛼  1 −
1−Γ(𝑡,

𝑟
2)

Γ(
𝑟
2)

 
 −

𝑙𝑜𝑔   1 −
1−Γ(𝑡,

𝑟
2)

Γ(𝑟2)
 

𝛽
 

𝛼−1

𝑒𝑥𝑝

 
 

 

− −

 𝑙𝑜𝑔   1 −
1−Γ(𝑡,

𝑟
2)

Γ(𝑟2)
 

𝛽
 

𝛼

 
 

 

,  

                                                                      0 <  𝑡 <  𝑟 < ∞,         𝛼, 𝛽, 𝑟 > 0. (3)                                                                       

And 

𝐹 𝑡, 𝛼, 𝛽, 𝑟 = 1 − 𝑒𝑥𝑝  −  −
 𝑙𝑜𝑔    1−

1−Γ(𝑡,
𝑟
2)

Γ(
𝑟
2)

 

𝛽
 

𝛼

 ,   𝑡, 𝛼, 𝛽, 𝑟 > 0,   (4) 

 

The density of the  W CH dis t r ib ut ion  can be right-skewed.  This fact implies that the WCHand  

BWCHdis t r ib ut io ns  can be very useful to fit different data sets with various shapes. Now, let 𝑇1 and 𝑇2 a re  

fo l lo wing Weibul l -Chi - square  (W CH)di s t r ib ut io n then the  bivariate Weibul l -Chi -

square (BWCH) d i s t r ib u t ion which de f ined  a s  t he joint PDF of 𝑇1 and 𝑇2 based on Gaussiancopula 

becomes  

𝑓  𝑡1, 𝑡2, 𝛼, 𝛽, 𝑟 

=  

𝛼𝑗
2
−
𝑟𝑗
2

Γ(
𝑟𝑗
2 )
𝑡
𝑟𝑗
2 −1 exp −
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2
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2 )
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𝑟𝑗
2 )

Γ(
𝑟𝑗
2 )

 

𝛽𝑗

 
 
 
 
 
𝛼𝑗

 
 
 

 
 2

𝑗 =1

 

 
1

 1−𝜌2
(exp[

−𝜌

2 1−𝜌2 
 𝜌 𝑧1

2 +   𝑧2
2 − 2𝑧1 𝑧2  ]) , 𝑡𝑗 , 𝛼𝑗 , 𝛽𝑗 , 𝑟𝑗 > 0                                         (5) 

 

 
(a)                                            (b) 

Fig.3   BWCH based on Gaussian copula: (a) Contour  plot and (b) PDF curve 

 

III.  Parameter Estimation 
In this section, we provide the estimation of the unknown parameters of BWCH distribution. There are two 

approaches to fitting copula models; parametric and semi-parametric methods.  

 

3.1 Parametric methods of estimation 

There are two approaches to fitting BWCH models. One approach is to estimate the marginal and copula 

parameters separately. The second approach is to obtain the estimation of the marginal and copula parameter 

from the pseudo-observations separately names modified ML. 

 

3.1.1 Maximum likelihood estimation (ML) 

 The log-likelihood function expressed as 

𝑙𝑜𝑔 𝐿 =  [𝑙𝑜𝑔 𝑓1 𝑡1𝑖 + 𝑙𝑜𝑔 𝑓2 𝑡2𝑖 + 𝑙𝑜𝑔 𝑐(𝐹1 𝑡1𝑖 , 𝐹2 𝑡2𝑖 )]𝑛
𝑖=1 (6) 

The estimation of BWCH distribution parameters obtained by ML in two-steps. The first step is estimating the 

parameters of marginal distribution 𝐹1 and 𝐹2 by MLE separately as 

                          log 𝐿𝑗 =  log 𝑓𝑗  𝑡𝑗𝑖      ,     𝑗 = 1,2.                                                                              𝑛
𝑖=1 (7) 

Then, estimating copula parameters by maximizing the copula density is; 

log 𝐿 =  𝑙𝑜𝑔 𝑐 𝐹1 𝑡1𝑖 , 𝐹2 𝑡2𝑖  
𝑛
𝑖=1 (8) 
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By considering the first step with (WCH) distribution, the parameters of each marginal distribution are 

estimated using MLE method. Now, if𝑡1, … , 𝑡𝑛  is a random sample from  WE(𝛼𝑗 ,𝛽𝑗 ,𝑟𝑗 ), then the log-likelihood 

function 𝐿(𝛼𝑗 , 𝛽𝑗 , 𝑟𝑗 )becomes  

log 𝐿𝑗 (𝑡𝑗 , 𝛼𝑗 , 𝛽𝑗 , 𝑟𝑗 ) = 𝑛𝑙𝑜𝑔 𝛼𝑗  +   𝑙𝑜𝑔  2
−
𝑟𝑗
2

Γ(
𝑟𝑗
2 )
𝑡
𝑟𝑗
2 −1 exp −

𝑡𝑗𝑖

2
  𝑛

𝑖=1 − 𝑛𝛼𝑗 𝑙𝑜𝑔 𝛽𝑗  −   𝑙𝑜𝑔  1 −
1−Γ(𝑡𝑗𝑖 ,

𝑟𝑗
2 )

Γ(
𝑟𝑗
2 )

 𝑛
𝑖=1 +

𝑛𝛼𝑗−𝑛𝑙𝑜𝑔−𝑙𝑜𝑔  1−1−Γ(𝑡𝑗𝑖𝑟𝑗2)Γ 𝑟𝑗2)𝛽𝑗−𝑖=1𝑛− 𝑙𝑜𝑔  1−1−Γ(𝑡𝑗𝑖, 𝑟𝑗2)Γ 𝑟𝑗2)𝛽𝑗𝛼𝑗.(9)                                                   

𝜕 log 𝐿𝑗 (𝑡𝑗 , 𝛼𝑗 , 𝛽𝑗 , 𝑟𝑗 )

𝜕𝛼𝑗

=
𝑛

𝛼𝑗

− 𝑛 𝑙𝑜𝑔 𝛽𝑗  + 𝑛 𝑙𝑜𝑔

 
 
 

 
 

−

𝑙𝑜𝑔   1 −
1−Γ(𝑡𝑗𝑖 ,

𝑟𝑗
2 )

Γ(
𝑟𝑗
2 )

 

𝛽𝑗

 
 
 

 
 

= 0      (10) 

𝜕 log 𝐿𝑗 (𝑡𝑗𝑖 ,𝛼𝑗 ,𝛽𝑗 ,𝑟𝑗 )

𝜕𝛽𝑗
=

−𝑛𝛼𝑗

𝛽𝑗
+

𝑛 𝛼𝑗−1 
2

𝛽𝑗
+ 𝛼𝑗  

 
 
 
 
 

−
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𝑟𝑗
2 )

Γ(
𝑟𝑗
2 )

 

𝛽𝑗

 
 
 
 
 
𝛼𝑗

𝑛
𝑖=1

1

𝛽𝑗
𝛼𝑗 +1 = 0 .  (11) 

𝜕 log 𝐿𝑗 (𝑡𝑗 ,𝛼𝑗 ,𝛽𝑗 ,𝑟𝑗 )

𝜕𝑟𝑗
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2
−
𝑟𝑗
2

Γ(
𝑟𝑗
2 )

𝑡

𝑟𝑗
2 −1
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𝑡𝑗𝑖
2   𝑛

𝑖=1

𝜕𝑟𝑗
−

𝜕   𝑙𝑜𝑔   1−
1−Γ 𝑡𝑗𝑖 ,

𝑟𝑗
2  

Γ 
𝑟𝑗
2  

 𝑛
𝑖=1

𝜕𝑟𝑗
+

 𝑛𝛼𝑗−𝑛 𝜕 𝑙𝑜𝑔  
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1−Γ 𝑡𝑗𝑖

𝑟𝑗
2  

Γ 
𝑟𝑗
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𝛽 𝑗

 
 
 
 
 
 
 

𝜕𝑟𝑗
+

𝜕  
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2 )
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2 )

 

𝛽 𝑗

 
 
 
 
 
 
 
𝛼𝑗

𝑛
𝑖=1

𝜕𝑟𝑗
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The solution of the system of nonlinear equations (10),(11) and (12)gives the MLE of 𝛼𝑗 , 𝛽𝑗 ,and 𝑟𝑗 .Then copula 

density will estimated as given, 

            log 𝐿(𝜃) =  𝑙𝑜𝑔 𝑐  𝐹1
  𝑡1𝑖 , 𝐹 2 𝑡2𝑖  

𝑛

𝑖=1

 13  

Where 𝐹1
  𝑡1  and , 𝐹 2 𝑡2  denote the ML estimates of the parameters from first step. The solution of the 

nonlinear equation (13) gives the MLE of 𝜃. 

 

3.1.2   Modified maximum likelihood estimation (MML) 

We will propose a modified ML method to obtain the model parameters of BWCH  as follows. Firstly, the 

parameter estimation of marginal distribution 𝐹1 and 𝐹2by MLE separately computed as        log 𝐿𝑗 =

 log𝑓𝑗  𝑡𝑗𝑖                 , 𝑗 = 1,2.  𝑛
𝑖=1  

The solution of the system of nonlinear equations (10),(11) and (12)gives the MLE of 𝛼𝑗 , 𝛽𝑗 ,and 𝑟𝑗 .Secondly, 

estimate copula parameters by maximizing the copula density 

as                               log 𝐿  𝜃 =  log⁡[𝑐𝜃 (𝑈 𝑖 , 𝑉 𝑖)]𝑛
𝑖=1 (14) 

Where  𝑈 𝑖 ,  V iare pseudo-observations computed 

from U i =
𝑅1𝑖

𝑛+1
=

𝑛

𝑛+1
𝐹 1 (𝑡1𝑖), V i =

𝑅2𝑖

𝑛+1 
=

𝑛

𝑛+1
𝐹 1 (𝑡2𝑖),    𝑅1𝑖  , 𝑅2𝑖are respectively the ranks of  𝑡1𝑖 , 𝑡2𝑖 .It is 

important to respect that the margins Cdf.s estimated parametrically from the first step. 

 

3.2 Semi-parametric methods of estimation 

This section presents the semiparametric methods to estimate the copula model parameter. 

Methods-of-moments  

Following Kojadinovic and Yan [7], let c be a bivariate random sample from Cdf 𝐶𝜃  [𝐹1(𝑡1 ), 𝐹2(𝑡2)], where F1 

and F2 are continuous Cdf.s and 𝐶θ is an absolutely continuous copula such that 𝜃 ∈ 𝒪, where 𝒪 is an open 

subset of 𝑅2. Furthermore, let 𝑅1, . . . , 𝑅𝑛 are the vectors of ranks associated with 𝑡1 , . . . , 𝑡𝑛  unless otherwise 

stated. In what follows, all vectors are row vectors. Method-of-moments approaches are based on the inversion 
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of a consistent estimator of a moment of the copula 𝐶θ. The two best-known moments, Spearman’s rho and 

Kendall’s tau, are respectively given by 

ρ θ = 12  u vdCθ u, v − 3
[0,1]2 ,                                                        (14)  

and        τ θ = 4  Cθ u, v dCθ u, v − 1
[0,1]2 .(15) 

Consistent estimators of these two moments can be expressed as 

                      𝜌𝑛 =
12

𝑛(𝑛+1)(𝑛−1)
 𝑅𝑖,1𝑅𝑖,2 − 3

𝑛+1

𝑛−1

𝑛
𝑖=1  ,                                                               (16) 

And𝜏𝑛 =
4

𝑛(𝑛−1)
 1[𝑡𝑖,1 ≤ 𝑡𝑗 ,1]1[𝑡𝑖,2 ≤ 𝑡𝑗 ,2] − 1𝑛

𝑖=1 (17) 

When the functions ρ and τ are one-to-one, consistent estimators of θ is given by  

𝜃𝑛,𝜌  =  𝜌−1 𝜌𝑛 ,𝜃𝑛,𝜏 =  𝜏−1 𝜏𝑛 . 

It called inversion of Kendall's (itau) and inversion of Spearman's rho (irho) respectively. For more information, 

see Kojadinovic and Yan [7].  

 

IV.   Goodness of fit tests for copula 

The idea of this test is to compare the empirical copula with the parametric estimator derived under the null 

hypothesis seeDobrić and Schmid [5]. That is, test if C is well-represented by a specific copula 𝐶𝜃  

𝐻0: 𝐶 = 𝐶𝜃𝑉𝑠.      𝐻1: 𝐶 ≠ 𝐶𝜃  

Two approaches are commonly used in the literature to test the goodness of fit of a copula see Genest, et al.[6]. 

The goodness of fit tests based on the empirical process 

ℂ𝑛 𝑢, 𝑣 =  𝑛 𝐶𝑛 𝑢, 𝑣 − 𝐶𝜃𝑛
 𝑢, 𝑣  , 

where𝐶𝑛 𝑢, 𝑣  is the empirical copula of the data of 𝑇1 and 𝑇2 

         𝐶𝑛 𝑢, 𝑣 =
1

𝑛
 1 𝑈𝑖 ,𝑛 ≤ 𝑢, 𝑉𝑖,𝑛 ≤ 𝑣 

𝑛

𝑖=1

,   𝑢, 𝑣 ∈  0,1 , 

𝑈𝑖 ,𝑛 , 𝑉𝑖 ,𝑛arepseudo observations from C calculated from data as follows. 𝑈𝑖,𝑛 =
𝑅1𝑖

𝑛+1
, 𝑉𝑖 ,𝑛 =

𝑅2𝑖

𝑛+1
,     𝑅1𝑖  , 𝑅2𝑖are 

respectively the ranks of 𝑡1𝑖 , 𝑡2𝑖 .Here 𝐶𝑛 𝑢, 𝑣   is a consistent estimator and 𝜃𝑛  is an estimator of 𝜃 obtained 

using the pseudo observations. According to Genest et al.[6], and Kojadinovic et al., [7], the test statistics is the 

Cramer-von Miss and is defined as𝑆𝑛 =   𝐶𝑛 𝑈𝑖 ,𝑛 , 𝑉𝑖 ,𝑛 − 𝐶𝜃𝑛
 𝑈𝑖 ,𝑛 , 𝑉𝑖,𝑛  

2𝑛
𝑖=1  

 

V.   Simulation Data 
In this section, a new bivariate proposed BWCH model based on Gaussian copula is presented. The 

correlation measures Kendall's tau and Spearman's rho of two variables with BWCH distribution are obtained 

and used to provide the values of copula parameter. Considering the following values of marginal and copula 

parametersof BWCH distribution based on Gaussian  copulawith different sizes of sample (n = 30, 50, 100, and 

150), where Gaussian copula parameterθ𝐺 = 0.8.The estimations of parameters for the model by Gaussian  

copula and the corresponding bias, mean squared errors and relative mean squared errors based on 1000 

replications are reported in Table 1, 2, and 3. 

To sum up, we observe the follows. 

 

Table 1. The estimates, the   bias, the mean squared errors and the relative mean squared errors of parameters by 

simulation study for BWCH distribution based on Gaussian copula 

Sample Size 

Estimates ,bias,0.5 mean square errors and relative mean square errors of Parameter 

 

𝛼1

= 0.7 

𝑏1

= 0.8 
𝑟1 = 4 

 

𝛼2 = 0.8 
𝑏2

= 0.7 
𝑟2 = 3 θ𝐺 = 0.8 

n=30 

ML 

1.300 

0.600 

1.904 

2.719 

0.899 

0.099 

1.159 

1.449 

4.249 

0.249 

8.333 

2.083 

1.158 

0.358 

1.297 

1.622 

1.052 

0.352 

2.060 

2.943 

3.204 

5.532 

5.532 

1.844 

0.511 

0.289 

1.134 

0.385 

MML 

1.300 

0.600 

1.904 

2.719 

0.899 

0.099 

1.159 

1.449 

4.249 

0.249 

8.333 

2.083 

1.158 

0.358 

1.297 

1.622 

1.052 

0.352 

2.060 

2.943 

3.204 

5.532 

5.532 

1.844 

0.763 

0.037 

0.067 

0.083 

n=50 ML 

1.22 

0.422 

1.107 

0.811 

0.0107 

0.150 

4.300 

0.300 

6.659 

1.004 

0.204 

0.725 

0.943 

0.243 

0.254 

3.200 

4.176 

4.176 

0.547 

0.253 

0.064 
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1.582 0.188 1.665 0.906 0.363 1.392 0.080 

MML 

1.22 

0.422 

1.107 

1.582 

0.811 

0.0107 

0.150 

0.188 

4.300 

0.300 

6.659 

1.665 

1.004 

0.204 

0.725 

0.906 

0.943 

0.243 

0.254 

0.363 

3.200 

4.176 

4.176 

1.392 

0.771 

0.029 

0.001 

0.001 

n=100 

ML 

0.964 

0.264 

0.521 

0.745 

0.747 

0.053 

0.067 

0.084 

4.274 

0.274 

4.412 

1.103 

0.866 

0.068 

0.370 

0.463 

0.870 

0.170 

0.127 

0.182 

3.194 

2.831 

2.831 

0.944 

0.669 

0.131 

0.017 

0.021 

MML 

0.964 

0.264 

0.521 

0.745 

0.747 

0.053 

0.067 

0.084 

4.274 

0.274 

4.412 

1.103 

0.866 

0.068 

0.370 

0.463 

0.870 

0.170 

0.127 

0.182 

3.194 

2.831 

2.831 

0.944 

0.781 

0.019 

0.000 

0.000 

n=150 

ML 

0.926 

0.226 

0.447 

1.852 

0.735 

0.065 

0.622 

0.777 

4.155 

0.155 

2.912 

2.679 

0.807 

0.007 

0.884 

1.105 

0.841 

0.141 

1.108 

0.430 

3.166 

2.0253 

2.025 

2.484 

0.670 

0.130 

0.229 

0.286 

MML 

0.926 

0.226 

0.447 

1.852 

0.735 

0.065 

0.622 

0.777 

4.155 

0.155 

2.912 

2.679 

0.807 

0.007 

0.884 

1.105 

0.841 

0.141 

1.108 

0.430 

3.166 

2.0253 

2.025 

2.484 

0.804 

0.004 

0.008 

0.011 

 

Table 2. The estimates, the   bias, the mean squared errors and the relative mean squared errors of correlation 

parameter by simulation study for BWCH distribution based on Gaussian copula 

Sample Size 

 

θ𝐺 = 0.8 

Estimates 
 

bias 
𝑀𝑆𝐸 RMSE Method Estimation 

n=30 

0.511 

0.763 

0.796 

0.797 

0.289 

0.037 

0.004 

0.003 

1.134 

0.067 

0.010 

0.022 

0.385 

0.083 

0.013 

0.007 

ML 

MML 

Itau 

IRho 

n=50 

0.547 

0.771 

0.755 

0.762 

0.253 

0.029 

0.045 

0.038 

0.064 

0.001 

0.002 

0.001 

0.080 

0.001 

0.003 

0.002 

ML 

MML 

Itau 

IRho 

n=100 

0.669 

0.781 

0.777 

0.776 

0.131 

0.019 

0.023 

0.024 

0.017 

0.000 

0.001 

0.001 

0.021 

0.000 

0.001 

0.001 

ML 

MML 

Itau 

IRho 

n=150 

0.670 

0.804 

0.806 

0.804 

0.130 

0.004 

0.006 

0.004 

0.229 

0.008 

0.021 

0.012 

0.286 

0.011 

0.026 

0.015 

ML 

MML 

Itau 

IRho 

 

1. As expected, most results improve with increasing in sample size. 

 

2. For most selected values of 𝛼1, 𝑏1, 𝑟1 , 𝛼2, 𝑏2 , 𝑟2   and  𝜃𝐺  the bias,  MSE and RMSE of the estimates 𝛼 1, 𝑏 1, 

𝑟 1 , 𝛼 2, 𝑏 2, 𝑟 2   and  𝜃 𝐺  become smaller as the sample size increased. 

 

3. the efficient estimators of marginal parameters of the model differ according to the parameters. It seems that 

ML estimates𝛼 1, 𝑏 1, 𝑟 1, 𝛼 2 , 𝑏 2, 𝑟 2   and of the model are the same corresponding MML estimates. 

 

4. For copula parameter, the MML provided efficient most estimates for the model with the marginals and 

Gaussian, copula parameters compared to ML, Itau, and Irho.  

 

Now, to check if the selected parmetric copula function is suitable for the marginals, goodness of fit test 

statistics using selected copula function for the marginals is preformed. The results in Table (3) show a non 
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signficant p-value obtained using parmetric bootstrap for Gaussian copula function which indicate that selected 

parmetric copula function provide approporiate fit to the marginals. In addition, estimate of the copula parmeter 

based on ML, MML, Itau, and Irho methods for the Gaussian copula.This estimates are used as intial value 

when fitting this copula model using WCH marginals. 

 

Table 3. Goodness of fit test statistics with their p-values and estimate of the copula parameter for selected 

copula functions. 

model statistic p-value Estimate of copula 

parameter 

𝜃 

Method estimation 

BWCH 

 

0.0235 0.3272 0.7949          Ml 

       0.0235 0.3422 0.7949 MML 

       0.0270 0.2792 0.7548 Itau 

0.0261 0.3651 0.7625 Irho 
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