Heat Transfer Studies on Plate Type Heat Exchanger Using **Miscible And Immiscible Liquids**

S.Ganapathy¹, N.Tamilselvan²

¹Department of Mechanical Engineering, Excel Engineering College, Komarapalayam, *Corresponding Author: S.Ganapathy*

ABSTRACT: Heat exchangers are used extensively and regularly in process and allied industries and are very important during design and operation. The choice of heat exchanger type directly affects the process performance and also influences plant size, plant layout, length of pipe runs, and the strength and size of supporting structures. Compact heat exchangers are characterized by having a comparatively large surface area to a given volume, when compared with traditional heat exchangers, in particular the shell and tube type. Two-phase (liquid-liquid) flow is frequently encountered in chemical process industries. In the present work the performance of plate type heat exchanger have been studied experimentally and comparison was made between the co-current and counter-current flow pattern with different cold side fluids that involve both immiscible and miscible systems. Hot water was taken as the hot side fluid for all the experimentation. The cold fluids used were water, kerosene-water system, acetic acidwater system of different compositions say 9%, 10%, 20% and 25% on volume basis in different flow rates. Also the flow rate of cold fluid was varied to find the effect of flow rate and composition on heat transfer coefficients, effectiveness and efficiencies. The hot fluid flow rate was kept constant at 11pm and the cold fluid flow rate was varied from 12.5 to 42.5 lph. The above experiments indicate that the plate type heat exchanger performs well when operated under counter current flow pattern.

KEYWORDS: Water-Kerosene. Water – Acetic acid

Date of Submission: 06-06-2018 _____

Date of acceptance: 21-06-2018

I. INTRODUCTION

A heat exchanger is process equipment used for transferring heat from one fluid to another fluid through a separating wall. "When none of the fluid condenses or evaporates, the unit is called as Heat Exchanger." In this only the sensible heat transfers from the one fluid to another. They are widely used in petroleum refineries, chemical plants, petrochemical plants, natural gas processing, refrigeration, power plants, air conditioning and space heating. Heat exchangers could be classified in many different ways such as according to flow arrangements, number of fluids, surface compactness, process function, heat transfer mechanisms, type of fluids (gas-gas, gas-liquid, liquidliquid, gas-two-phase, liquid-two-phase, etc.) and construction type (R.K. Shah et.al., 2000). There are several types of heat exchanger:

- Recuperative type, in which fluids exchange heat on either side of a dividing wall
- Regenerative type, in which hot and cold fluids occupy the same space containing a matrix of material that works alternatively as a sink or source for heat flow
- Evaporative type, such as cooling tower in which a liquid is cooled evaporatively in the same space as coolant.

1.1 OBJECTIVE OF THE PROPOSED WORK

The experimental work in plate type heat exchanger (Parallel and Counter flow) involved in the determination of outlet temperature of both cold and hot fluid for various flow rates. The water-water system, wateracetic acid system, and water-kerosene system at 9%, 10%, 20% and 25% composition on volume basis of kerosene and acetic acid, were used to determine the performance of plate type heat exchanger. i.e. overall heat transfer coefficient (U₀), effectiveness (ϵ), cold side efficiency (η_c) and hot side efficiency (η_b).

2.1EXPERIMENTAL STUDIES

II. PLATE TYPE HEAT EXCHANGER

Experiments were carried out on a plate type heat exchanger with both parallel and counter flow patterns with miscible (acetic acid) and immiscible (Kerosene) systems in cold side and water in hot side

2.2 Experimental Set-up

The plate type heat exchanger under study consists of 5 plates and 2 end plates made of Aluminium of dimensions, 150 mm x150 mm inner dimension and 250 mm x 250 mm outer dimension. The heat transfer plates are arranged to form a network of parallel or counter flow channels. The plate pack is mounted on upper and lower rails and compressed between two end frames using compression bolts. The hot fluid is hot water which is obtained from an electric geyser and it flows through one plate while the cold fluid is flowing through the other plate. The hot water flows always in one direction and the flow rate is controlled by means of a gate valve. The cold water can be admitted at one of the ends enabling the heat exchanger to run as a parallel flow apparatus or a counter flow apparatus by simple valve operation.

2.3 HEAT EXCHANGER SPECIFICATIONS

- ▶ No. of plates: 5 plates and 2 end plates.
- Size of the plate: outer diameter 215 mm x 215 mm inner diameter 150 mm x 150 mm.
- Material: Aluminium
- ➢ Gasket: silicon 6 nos.
- > Temperature scanner 5 point 1 nos.
- Thermocouple 4 nos. 2 nos. for cold water inlet and outlet, 2 nos. for hot water inlet and outlet.
- Measuring tank 70mm in diameter length 500 mm 2nos.
- Stop watch- digital- 1 no.
- Geyser- single phase 230v-3kW-2 nos. total 6 nos. with main switch
- Insulation material: Asbestos

2.4 EXPERIMENTAL PROCEDURE

The experimental setup was operated in counter-current flow pattern by adjusting the valves. The flow of water on hot side was started. The flow rate of water entering the hot side of exchanger was adjusted with the help of a ball valve.

The geysers were switched ON and waited till temperature reaches a steady state. The temperature scanner was switched ON and inlet temperature of hot side (T_1) was noted. The pumps were operated and the rotameters on cold side were adjusted to get the required flow rate of cold fluid with required composition (9% or 10% or 20% or 25% on the basis of volume).

The inlet temperature of cold fluid (t_1) was noted from temperature scanner. The flow rates on the hot and cold side were unaltered until steady state is reached. When steady state is reached, outlet temperature of hot fluid (T_2) and cold fluid (t_2) were noted. The flow rate of cold fluid was varied and the above procedure was repeated. After completing a run with different flow rates for a particular solution at a particular composition, the procedure

was repeated for different compositions and different systems (Kerosene-Water, Acetic acid-Water). Similar procedure was followed for the co-current flow operation.

2.5 EXPERIMENTAL OBSERVATION 2.5.1 Counter Current Flow Pattern

2.5.1.1 IMMISCIBLE SYSTEMS

Volumetric flow rate	Volumetric flow rate	Inlet Tempe °C	rature	Outlet Tempe °C	rature
of cold	of hot	Cold	Hot	Cold	Hot
fluid lph	fluid lpm	Fluid	Fluid	Fluid	Fluid
9% kerosene	-water sytem				
12.5	1	31	74	50	59
17.5	1	31	74	49	58
22.5	1	33	73	48	57
27.5	1	34	75	48	56
32.5	1	32	75	47	55
37.5	1	35	76	46	57
42.5	1	33	76	43	57
10% kerosen	e- water system	n			
12.5	1	29	76	50	67
17.5	1	30	77	51	65
22.5	1	31	76	51	64
27.5	1	33	75	48	63
32.5	1	35	76	51	63
37.5	1	36	75	52	64
42.5	1	37	75	51	65
20% kerosen	e-water system	1			
12.5	1	34	78	51	69
17.5	1	35	78	50	67
22.5	1	35	79	48	68
27.5	1	36	79	48	67
32.5	1	37	79	47	66
37.5	1	38	80	46	65
42.5	1	39	80	47	65
25% kerosen	e- water system	n			
12.5	1	31	73	48	59
17.5	1	33	76	47	67
22.5	1	34	75	50	64
27.5	1	33	74	48	62.9
32.5	1	35	72	48	61.9
37.5	1	32	77	46	59.9
42.5	1	36	78	45	58.9

Table 2.1 Kerosene- water system

2.5.1.2 MISCIBLE SYSTEMS

Volumetric flow rate of cold fluid	Volumetric flow rate of hot fluid	Inlet Temperat	ure °C	Outlet Temp	erature °C
lph	lpm	Cold Fluid	Hot Fluid	Cold Fluid	Hot Fluid
9% Acetic acid	l-water sytem				
12.5	1	33	72	56.9	63
17.5	1	33	72	54.9	61
22.5	1	33	72	53.9	58
27.5	1	33	72	49.9	57
32.5	1	33	72	47.9	56
37.5	1	33	72	47.9	55
42.5	1	33	72	42.9	54
10% Acetic aci	id – water system	1			
12.5	1	33	72	53.9	63.9
17.5	1	33	72	51.9	62.9
22.5	1	33	72	50.9	58.9

1	1		1	1	1	
27.5	1	33	72	50.9	57.9	
32.5	1	33	72	49.9	55.9	
37.5	1	33	72	48.9	52.9	
42.5	1	33	72	46.9	54.9	
20% A	cetic acid -water sys	stem				
12.5	1	33	72	54	67	
17.5	1	33	72	52	64	
22.5	1	33	72	52	63	
27.5	1	33	72	52	62	
32.5	1	33	72	51	61	
37.5	1	33	72	50	61	
42.5	1	33	72	49	60	
25% A	cetic acid – water sy	vstem				
12.5	1	33	72	60	64	
17.5	1	33	72	58	63	
22.5	1	33	72	58	62	
27.5	1	33	72	57	62	
32.5	1	33	72	54	61	
37.5	1	33	72	55	61	
42.5	1	33	72	54	60	

 Table 2.2 Acetic acid- water system

2.5.2 Co-Current Pattern 2.5.2.1 IMMISCIBLE SYSTEMS

Volumetric	Volumetric				
flow rate of	flow rate of	Inlet Temperat	ture °C	Outlet Temp	erature °C
cold fluid lph	hot fluid lpm	Cold Fluid	Hot Fluid	Cold Fluid	Hot Fluid
9% kerosene-wa	ater sytem				
12.5	1	31	74	45	65
17.5	1	31	74	46	63
22.5	1	33	73	45	61
27.5	1	34	75	45	63
32.5	1	32	75	43	63
37.5	1	35	76	44	64
42.5	1	33	76	43	64
10% kerosene-	water system				
12.5	1	29	76	45	68
17.5	1	30	77	46	67
22.5	1	31	76	46	66
27.5	1	33	75	44	65
32.5	1	35	76	47	65
37.5	1	36	75	48	66
42.5	1	37	75	47	67
20% kerosene-v	vater system				
12.5	1	34	78	48	71
17.5	1	35	78	48	68
22.5	1	35	79	47	68
27.5	1	36	79	48	67
32.5	1	37	79	47	66
37.5	1	38	80	46	65
42.5	1	39	80	47	65
25% kerosene-	water system				
12.5	1	31	73	43	64
17.5	1	33	76	44	67
22.5	1	34	75	45	64
27.5	1	33	74	43	62
32.5	1	35	72	44	62
37.5	1	32	77	42	63
42.5	1	36	78	43	63

Table 2.3 Kerosene – Water system

2.5.2.2 MISCIBLE SYSTEMS

Volumetric	Volumetric	Inlet Temperatur	e °C	Outlet Temp	oerature °C
flow rate of cold fluid lph	flow rate of hot fluid lpm	Cold Fluid	Hot Fluid	Cold Fluid	Hot Fluid
9% Acetic acid -v	water sytem	Cold Fluid	Hot Huid	Tulu	Hot Pluid
12.5	1	33	72	49	68
17.5	1	33	72	47	67
22.5	1	33	72	46	64
27.5	1	33	72	44	64
32.5	1	33	72	44	62
37.5	1	33	72	43	61
42.5	1	33	72	42	61
10% Acetic acid	- water system				
12.5	1	33	72	48	66
17.5	1	33	72	47	65
22.5	1	33	72	46	63
27.5	1	33	72	44	62
32.5	1	33	72	43	61
37.5	1	33	72	43	61
42.5	1	33	72	42	60
20% Acetic acid	-water system				
12.5	1	33	72	50	69
17.5	1	33	72	48	68
22.5	1	33	72	48	68
27.5	1	33	72	48	67
32.5	1	33	72	47	66
37.5	1	33	72	46	66
42.5	1	33	72	45	65
25% Acetic acid	- water system	[[
12.5	1	33	72	50	67
17.5	1	33	72	48	66
22.5	1	33	72	48	65
27.5	1	33	72	47	64
32.5	1	33	72	46	62
37.5	1	33	72	45	61
42.5	1	33	72	44	60

 Table 2.4 Acetic acid – water system

2.6 CALCULATION METHOD

The performance of the heat exchanger for different solutions of different solutions of different concentrations is evaluated by calculating the overall heat transfer coefficient, NTU, exchanger effectiveness and efficiencies. The heat exchanger specifications are taken from the section 3.2.2. The calculation method is similar for co-current and counter-current operations. The calculation involves the following steps,

1. Average Temperature:

The average temperature of hot and cold fluid are calculated using the formula,

For cold fluid, $t_{avg} = \frac{(t_1 + t_2)}{2}$ For hot fluid, $T_{avg} = \frac{(T_1 + T_2)}{2}$

t₁-Inlet temperature of cold fluid t2- Outlet temperature of cold fluid T_1 – Inlet temperature of hot fluid T₂ – Outlet temperature of hot fluid

2. Log Mean Temperature Difference:

For counter-current flow,
$$LMTD = \frac{((T_2 - t_1) - (T_1 - t_2))}{\ln \frac{(T_2 - t_1)}{(T_1 - t_2)}}$$

For co-current flow, $LMTD = \frac{((T_2 - t_2) - (T_1 - t_1))}{\ln \frac{(T_2 - t_2)}{(T_1 - t_1)}}$

3. Fluid Properties:

Fluid properties such as density, viscosity, specific heat capacity and thermal conductivity at average temperature of hot and cold fluid should be calculated. Properties of pure substance at average temperature are taken from Perry's chemical engineering handbook. To find the properties of fluid mixture the following formulas are used,

$$\mu_{mix} = \mu_{pure}(x_{1}) + \mu_{water}(1 - x_{1})$$

$$\rho_{mix} = \rho_{pure}(x_{1}) + \rho_{water}(1 - x_{1})$$

$$c_{p_{mix}} = c_{p_{pure}}(x_{1}) + c_{p_{water}}(1 - x_{1})$$

$$k_{mix} = k_{pure}(x_{1}) + k_{water}(1 - x_{1})$$

4. Mass Flow Rate:

The volumetric flow rate of hot and cold fluid are converted in to mass flow rate by multiplying it with their respective densities at average temperature.

Mass flow rate (m) = Volumetric flow rate x Density

5. Dimensionless Numbers:

Reynolds number, Nusselt number and Prandtl number for hot and cold fluids are calculated as follows;

Reynolds number = $\frac{(D_e V \rho)}{\mu}$. Prandtl number = $\frac{(c_p \mu)}{k}$.

Nusselt number
$$= \frac{(hD_e)}{k} = (0.28)(N_{\rm Re})^{0.65}(N_{\rm Pr})^{0.4}.$$

6. Heat Transfer Coefficient:

Individual heat transfer coefficient is calculated from respective Nusselt number. Overall heat transfer is found using the formula,

$$U_o = \frac{1}{\frac{1}{h_c} + \frac{x}{k} + \frac{1}{h_h}}$$

7. Capacity Rate Ratio:

Capacity rate = Mass flow rate (m) x Specific heat capacity (cp)

Capacity rate ratio = $\frac{C_{\min}}{C_{\max}}$ $C_{\min} = m_c x c_{pc}$ $C_{\max} = m_h x c_{ph}$

8. Number of Transfer Units:

$$NTU = \frac{\left(U_o xA\right)}{C_{\min}}.$$

9. Efficiency: Efficiency for both hot and cold side are calculated using the formula,

Cold side efficiency =
$$\eta_c = \frac{\left(m_c x c_{pc} x \Delta T\right)}{\left(m_c x c_{pc} x \Delta T_{\max}\right)}$$
.
Hot side efficiency = $\eta_h = \frac{\left(m_h x c_{ph} x \Delta T\right)}{\left(m_h x c_{ph} x \Delta T_{\max}\right)}$.

10. Effectiveness:

Effectiveness =
$$\frac{(NTU)}{(1+NTU)} x100$$
.

III. PERFORMANCE ANALYSIS OF PLATE TYPE HEAT EXCHANGER 3.1 COUNTER CURRENT FLOW PATTERN 3.1.1 Immiscible Systems

www.ijeijournal.com

							Table	3.1 Kero	sene -wat	er system	1						
		Cold Flui	d			Ho	t Fluid (hot	water)		Heat Transfer coefficient			Capacity Rate	No. of Transfer	Effectiveness	Effic	iency
Fluid Te	mperature	Mass flow rate	Reynolds number	Nusselts number	Fluid ten	operature	Mass Flow rate	Reynolds number	Nusselts number	Cold side	Hot side	Overall	Ratio	units		cold side	hot side
1	ĸ	Kg/sec			3	ç	Kg/sec			W/m ⁴ K	W/m ² K	W/m ³ K			%	%	%
t	t ₂	m,	Ngr	N _{hu}	Ti	T.	m,	N _{Er}	N _N	h,	h,	U,	R,	NTU	ε	η.	η
								% Kerosen	e- Water S	ystem							
304.17	323.17	0.00336	12.4555	2.52857	347.17	332.17	0.01623	85.4683	7.4868	148.76	493.89	113.38	0.197022	2.47244	71.2018	44.186	34.884
304.17	322.17	0.0047	17.2782	3.1409	347.17	331.17	0.01624	84,8646	7.4765	184.61	492.83	132.99	0.275804	2.07129	67.4404	41.86	37.209
306.17	321.17	0.00604	22.4199	3.70512	346.17	330.17	0.01625	83.6641	7.4558	217.98	490.72	149.29	0.354402	1.8086	64.3951	37.5	40
307.17	321.17	0.00738	27.6535	4.22913	348.17	329.17	0.01624	84.2632	7.4662	249.05	491.78	163.35	0.433199	1.61937	61.8228	34.146	46.341
305.17	320.17	0.00873	31.7927	4.68808	348.17	328.17	0.01625	83.6641	7.4558	275.27	490.72	174.1	0.512044	1.45985	59.347	34.884	46.512
308.17	319.17	0.01007	37.3664	5.16421	349.17	330.17	0.01623	85.4683	7.4868	303.83	493.89	185.55	0.591065	1.34877	57.4246	26.829	46.341
306.17	316.17	0.01143	40.4245	5.54983	349.17	330.17	0.01623	85.4683	7.4868	324.86	493.89	193.19	0.670298	1.23831	55.3234	23.256	44.186
								0% Keroser	e- Water S	ystem							
302.17	323.17	0.00335	12.3096	2.52427	349.17	340.17	0.01618	91.6062	7.5893	146.97	504.22	112.86	0.196026	2.47921	71.2579	44.681	19.149
303.17	324.17	0.00469	17.5538	3.15307	350.17	338.17	0.01619	90.9864	7.5791	183.94	503.21	133.39	0.274309	2.09349	67.6741	44.681	25.532
304.17	324.17	0.00603	22.7761	3.71946	349.17	337.17	0.0162	89.7494	7.5587	217.2	501.18	149.86	0.352481	1.82961	64.6595	44.444	26.667
306.17	321.17	0.00737	27.5845	4.22985	348.17	336.17	0.01621	88.5174	7.5382	246.76	499.11	163.15	0.430667	1.62948	61.9696	35.714	28.571
308.17	324.17	0.0087	34.1026	4.7584	349.17	336.17	0.0162	89.1327	7.5484	278.89	500.15	176.73	0.508771	1,49448	59.9114	39:024	31.707
309.17	325.17	0.01003	40.049	5.24112	348.17	337.17	0.0162	89.1327	7.5484	307.72	500.15	187.88	0.586891	1.37731	57.9357	41.026	28.205
310.17	324,17	0.01137	45.3889	5.68534	348.17	338.17	0.0162	89.7494	7.5587	333.8	501.18	197.46	0.665293	1.27719	56.0863	36.842	26.316
							2	0% Keroser	e– Water S	ystem							
307.17	324.17	0.00326	13.9502	2.60983	351.17	342.17	0.01616	94.0871	7.63	139.85	508.15	108.79	0.18151	2.58342	72.0937	38.636	20.455
308.17	323.17	0.00457	19.5303	3.24785	351.17	340.17	0.01617	92.847	7.6096	174.04	506.21	128.29	0.253998	2.17605	68.5143	34.884	25.581
308.17	321.17	0.00588	24.6673	3.81009	352.17	341.17	0.01616	94.0871	7.63	203.8	508.15	143.93	0.326748	1.89854	65.4999	29.545	25
309.17	321.17	0.00718	30.4194	4.34898	352.17	340.17	0.01616	93.4673	7.6198	232.84	507.19	157.73	0.39925	1.70244	62.9964	27.907	27.907
310.17	320.17	0.00849	35.9502	4.84781	352.17	339.17	0.01617	92.847	7.6096	259.54	506.21	169.44	0.471733	1.54746	60.7453	23.81	30.952
311.17	319.17	0.00979	41.481	5.32037	353.17	338.17	0.01617	92.847	7.6096	284.84	506.21	179.87	0.544307	1.42369	58.7406	19:048	35.714
312.17	320.17	0.01109	47.8508	5.79256	353.17	338.17	0.01617	92.847	7.6096	310.67	506.21	189.84	0.616819	1.32593	57.0065	19.512	36.585
							2	5% Keroser	e– Water S	ystem							
304.17	321.17	0.00323	13.7402	2.61369	346.17	332.17	0.01624	84.8646	7.4765	132.82	492.83	103.83	0.173828	2.56579	71.9557	40.476	33.333
306.17	320.17	0.00452	19,4125	3.25882	349.17	340.17	0.01618	91.6062	7.5893	165.77	504.22	123.62	0.243964	2.18208	68.574	32.558	20.93
307.17	323.17	0.0058	25.8709	3.86598	348.17	337.17	0.0162	89.1327	7.5484	197.38	500.15	140.07	0.313381	1.92302	65.7888	39.024	26.829
306.17	321.17	0.0071	30.783	4.37997	347.17	336.1	0.01621	87.8609	7.5272	223.01	498	152.31	0.382845	1.71085	63.1112	36.585	27
308.17	321.17	0.00839	37.0386	4.90069	345.17	335.1	0.01623	86.0316	7.4964	249.98	494.86	164.09	0.452148	1.55955	60.9306	35.135	27.216
305.17	319.17	0.00969	40.8442	5.3279	350.17	333.1	0.01621	87.8609	7.5272	270.49	498	173.06	0.52206	1.42554	58.7721	31.111	37.933
309.17	318.17	0.01097	47.5737	5.81243	351.17	332.1	0.01621	87.8609	7.5272	295.94	498	183.14	0.59167	1.33107	57.1012	21.429	45.405

3.1.2 Miscible Systems

Cold Fluid Hot Fluid (hot water) Heat Transfer coefficient No. of Transfer units Effectiveness Efficiency Capaci Rate Ratio Fluid Temperature Reynolds number Mas Nusselts Fluid temp Mas Reynold number Cold He Overall enld flow rate Flow mber number side side side side W/m²K W/m²K W/m²K % Kg/sec Kg/sec 56 Na Nse \mathbf{h}_{r} \mathbf{U}_{e} R NTU t, N_n $N_{N_{2}}$ T, T_1 h, m, $\mathbf{m}_{\mathbf{a}}$ $\eta_{\rm f}$ $\eta_{\rm T}$ t, ε Water Acetic a 7.5074 306.17 330.1 0.00343 12.2165 2.52736 345.17 336.17 0.01622 86.682 150.56 495.99 114.53 0.201772 2.4398 70.9289 61.359 23.077 328.1 0.00481 3.1334 345.17 334.17 85.4683 7.4868 186.35 493,89 133.97 67.0825 56.231 306.1716,7936 0.01623 0.282452 28.205 331.11 306.17 327.1 0.00619 21.3954 3.68253 345.17 0.01625 83.6641 7.4558 218.82 490.72 149.68 0.362972 1.7705 63.906 53.667 35.897 1.5673 306.17 323.1 0.00757 25.2118 4.16453 345.17 330.17 0.01625 83.0673 7.4454 246.58 489,66 162.05 0.443838 61.0484 43.41 38.462 173.06 0.524599 29.2574 273.34 306.1 0.00895 4.62521 345.1 329.1 0.01626 82.4728 7.435 488.6 1.4158 58.6057 38.282 41.026 299.99 183.22 306.17 321.1 0.01033 33 7586 5.07606 345.17 328.17 0.01626 81.8806 7.4245 487.54 0.605173 1.2991 56 5041 38.787 43.50 7.4141 320.89 306.17 81.2908 54.3731 25.462 46.154 316.1 0.01172 36.5612 5.45687 345.17 327.17 0.01623 486.48 190.65 0.686295 1.1917 10% Acetic a Water System 306.17 327.1 0.00344 11.83 2.51335 345.17 337.1 0.01622 87.2492 148.17 496.96 113.19 0.200962 2.4216 70.7739 53.667 20.692 306.17 325.1 0.00482 16.2614 3.11609 345.17 336.1 86.6394 7.5067 183.38 495.91 132.58 0.281378 2.0252 66.9447 48.538 23.256 0.01623 306.17 324.1 0.00619 20.7173 3.66224 345.17 332.1 0.01624 84.2212 7.4654 491.7 148.13 0.36151 1.7596 63.7632 45.974 33.513 61.1018 45.974 36.077 324.1 0.00757 25.3211 7.4551 306.17 4.17248 345.17 331.1 0.01625 83.6222 245.33 490.64 161.62 0.441743 1.5708 172.8 306.17 323.1 0.00895 29.6529 4.64246 345.17 329.1 0.01626 82.4313 7.4343 272.72 488.52 0.521922 1.4209 58.6928 43.41 41.205 56.5076 40.846 48.897 306.17 322.1 0.01033 33.9044 5.08564 345.17 326.1 0.01627 80.6622 7.4028 298.47 485.34 182.35 0.601921 1.2993 37.7323 81.8393 7.4238 321.97 54.5778 35.718 43.769 306.17 320.1 0.01171 5.49658 345.17 328.1 0.01626 487.46 191.19 0.682706 1.2016 20% Acetic acid - Water System 306.17 327.17 0.00345 11.3042 2.51875 345.17 89.1327 7.5484 136.69 500.15 106.51 0.19148 70.3373 53.846 12.821 340.17 2.3932 325.17 306.17 0.00483 15.5328 3.1223 345.17 337.17 0.01622 87.2919 7.5177 169.16 497.03 125.05 0.267965 2.0064 66.5437 48.718 20.513 325.17 0.00622 7.5074 199.18 140.65 0.344449 63.5107 48.718 23.077 306.17 19.9707 345.17 336.17 0.01622 86.682 495.99 325.17 0.0076 4.18858 345.17 335.17 86.0741 7.4971 226.93 494.94 153.84 0.420899 1.5707 48.718 25.641 306.17 24.4086 0.01623 60.9088 58.5735 46.154 28.205 56.4996 43.59 28.205 324.17 323.17 306.17 0.00898 28,581 4.66008 345.17 334.17 0.01623 85.4683 7,4868 252.26 493,89 164,96 0.497384 1.4249 0.01037 32.6769 5.1046 345.1 334.1 85.4683 7.4868 276.09 493.89 174.82 0.573985 0.01623 306.17 322.17 0.01175 36.6084 5.52702 345.17 333.17 0.01624 84 8646 7.4765 298.66 492.83 183.47 0.650461 1.2116 54.6032 41.026 30.769 25% Acetic acid - Water System 306.17 333.17 0.00345 11,7229 345.17 0.01622 87.2919 7.5177 133.28 497.03 104.3 0.186379 2.405 70.6394 69.231 20.513 Т 331.17 0.00484 331.17 0.00622 7.5074 122.66 0.260935 138.06 0.335413 66.8931 64.103 23.077 63.8839 64.103 25.641 306.17 16.0908 3.16648 345.17 336.17 0.01622 86.682 164.92 495.99 1 72819 335.1 306.17 20.6882 345.17 0.0162 86.0741 7.4971 194.19 494.94 7.4971 306.17 330.17 0.0076 25.0391 4 23892 345.17 0.01623 86.0741 220.62 494.94150.91 0.409999 1.5818 61.2668 61.538 25.641 58.8509 53.846 28.205 306.17 0.00899 28.7472 4.69608 345.17 334.1 0.01623 85.4683 7.4868 243.84 493.89 161.32 0.484613 493.89 171.7 0.559101 1.4302 328.17 306.17 0.01037 33,4888 5.16432 345.17 334.1 0.01623 85.4683 7,4868 268.37 1.3194 56.8857 56.41 28.205 306.17 327.17 0.01176 37.5924 5.59068 345.17 0.01624 84.8646 7.4765 290.29 492.83 180.27 0.633583 54.9996 53.846 30.769

Table 3.2 acid -water system

3.2 CO-CURRENT FLOW 3.2.1 Immiscible Systems

Table 3.3 Kerocene -water system

		Cold Flu	id			Hot Fluid (hot water)				Heat T	ransfer co	efficient	Capacity Rate Ratio	No. of Transfer	Effectiveness	Effic	iency
Fluid Te	mperature	Mass flow rate	Reynolds number	Nusselts number	Fluid ten	operature	Mass Flow rate	Reynolds number	Nusselts number	Cold side	Hot side	Overall	Katto	units		cold side	hot side
	К	Kg/sec	1		1	C	Kg/sec			W/m ² K	W/m ³ K	W/m ² K	1		%	- %	%
t ,	t2	m,	N _a	N _{Ns}	T,	T2	m,	N ₃₀	N _{Se}	h,	h.	U.,	R,	NTU	3	η,	η
							. 9	% Kerosen	- Water Sy	stem							
304.17	318.17	0.00336	11.8896	2.50506	347.17	338.17	0.01621	88.5174	7.5382	146.63	499.11	112.4	0.197368	2.44965	71.0116	32.558	20.93
304.17	319.17	0.0047	16.8028	3.12334	347.17	336.17	0.01621	87.9038	7.528	183.02	498.08	132.54	0.276218	2.06345	67.357	34.884	25.581
306.17	318.17	0.00605	21.8066	3.6845	346.17	334.17	0.01622	86.682	7.5074	216.12	495.99	148.89	0.354933	1.8031	64.3252	30	30
307.17	318.17	0.00739	26.9015	4.20569	348.17	336.17	0.01623	86.0741	7.4971	246.94	494.94	162.78	0.433655	1.61313	61.7317	26.829	29.268
305.17	316.17	0.00874	30.6216	4.65297	348.17	336.17	0.01623	85.4683	7.4868	272.07	493.89	173.21	0.512645	1.45163	59.2108	25.581	27.907
308.17	317.17	0.01008	36.6839	5.14507	349.17	337.17	0.01623	85.4683	7.4868	302.1	493.89	184.91	0.591215	1.34374	57.3332	21.951	29.268
306.17	316.17	0.01143	40.4245	5.54983	349.17	337.17	0.01624	84.8646	7.4765	324.86	492.83	193.03	0.670148	1.23727	55.3027	23.256	27.907
							1	0% Kerosen	e- Water S	ystem							
302.17	318.17	0.00335	11.7442	2.50058	349.17	341.17	0.01618	92.2265	7.5994	144.83	505.22	111.64	0.196188	2.45105	71.0233	34.043	17.021
303.17	319.17	0.00469	16.7568	3.12372	350.17	340.17	0.01618	92.2265	7.5994	181.31	505.22	132.14	0.274597	2.0726	67.4543	34.043	21.277
304.17	319.17	0.00603	21.748	3.68497	349.17	339.17	0.01619	90.9864	7.5791	214.11	503.21	148.57	0.352851	1.8127	64.447	33.333	22.222
306.17	317.17	0.00737	26.5809	4.19838	348.17	338.17	0.0162	89.7494	7.5587	243.94	501.18	162.13	0.431067	1.61851	61.8104	26.19	23.81
308.17	320.17	0.0087	32.8988	4.72373	349.17	338.17	0.01619	90.3674	7.5689	275.84	502.2	175.75	0.509254	1.48547	59,7662	29.268	26.829
309.17	321.17	0.01004	38.6528	5.20326	348.17	339.17	0.01619	90.3674	7.5689	304.41	502.2	186.93	0.587457	1.36963	57.7994	30.769	23.077
310.17	320.17	0.01138	43.8065	5.64428	348.17	340.17	0.01619	90.9864	7.5791	330.21	503.21	196.51	0.665936	1.27041	55.9551	26.316	21.053
							2	0% Kerosen	e- Water S	ystem							
307.17	321.17	0.00327	13.5814	2.59538	351.17	344.17	0.01615	95.3232	7.6502	138.7	510.04	108.18	0.181618	2.56849	71.9769	31.818	15.909
308.17	321.17	0.00457	19.1857	3.23588	351.17	341.17	0.01616	93.4673	7.6198	173.09	507.19	127.84	0.25408	2.1681	68.4354	30.233	23.256
308.17	320.17	0.00588	24.4466	3.80302	352.17	341.17	0.01616	94.0871	7.63	203.23	508.15	143.65	0.326763	1.89472	65.4544	27.273	25
309.17	321.17	0.00718	30.4194	4.34898	352.17	340.17	0.01616	93.4673	7.6198	232.84	507.19	157.73	0.39925	1.70244	62.9964	27.907	27.907
310.17	320.17	0.00849	35.9502	4.84781	352.17	339.17	0.01617	92.847	7.6096	259.54	506.21	169.44	0.471733	1.54746	60.7453	23.81	30.952
311.17	319.17	0.00979	41.481	5.32037	353.17	338.17	0.01617	92.847	7.6096	284.84	506.21	179.87	0.544307	1.42369	58.7406	19.048	35.714
312.17	320.17	0.01109	47.8508	5.79256	353.17	338.17	0.01617	92.847	7.6096	310.67	506.21	189.84	0.616819	1.32593	57.0065	19.512	36.585
			-		-		2	5% Kerosen	e- Water S	ystem		-					
304.17	316.17	0.00323	13.1165	2.58872	346.17	337.17	0.01621	87.9038	7.528	130.9	498.08	102.87	0.174024	2.54213	71.7684	28.571	21,429
306.17	317.17	0.00452	18,8854	3.24026	349.17	340.17	0.01618	91.6062	7.5893	164.34	504.22	122.83	0.243963	2.16805	68.4349	25.581	20.93
307.17	318.17	0.00581	24.7324	3.82985	348.17	337.17	0.0162	89.1327	7.5484	194.63	500.15	138.68	0.313383	1.90391	65.5637	26.829	26.829
306.17	316.17	0:00711	29.4026	4.33848	347.17	335.17	0.01622	87.2919	7.5177	219.82	497.03	150.73	0.382765	1.69307	62.8677	24.39	29.268
308.17	317.17	0.00839	35.7246	4.86392	345.17	335.17	0.01623	86.0741	7.4971	247.18	494.94	162.88	0.452155	1.5481	60.755	24.324	27.027
305.17	315.17	0.0097	39.3495	5.28705	350.17	336.17	0.0162	89.7494	7.5587	267.33	501.18	172.14	0.522427	1.41793	58.6423	22.222	31.111
300.17	316.17	0.01009	46 7168	\$ 700.40	351 17	336.17	0.01619	90.3674	7.5689	204.27	502.2	183.06	0.502212	1 33046	\$7.00	16 667	35 714

3.2.2 Miscible Systems

	Table 3.4 Acetic acid -water system																
		Cold Flui	d			Hot Fluid (hot water)				Heat T	ransfer co	efficient	Capacity Rate	No. of Transfer	Effectiveness	Effic	iency
Fluid Te	mperature	Mass flow rate	Reynolds number	Nusselts number	Fh	uid rature	Mass Flow pate	Reynolds number	Nusselts number	Cold side	Hot side	Overall	Katio	units		cold side	hot side
1	ĸ	Kg/sec			1	<	Kg/sec			W/m ² K	W/m ³ K	W/m ² K			%	%	%
t,	t ₁	m,	N _a ,	Non	T	T ₂	m,	N _a ,	N _{2a}	h,	h,	U.	R,	NTU	ε	η,	η
							9	% Acetic aci	d – Water	System							
306.17	322.17	0.00344	11.3631	2.49028	345.17	341.17	0.0162	89.7494	7.5587	147.32	501.18	112.91	0.20227	2.4021	70.6066	41.026	10.256
306.17	320.17	0.00482	15.6212	3.08778	345.17	340.17	0.0162	89.1327	7.5484	182.32	500.15	132.32	0.28322	2.01	66.7775	35.897	12.821
306.17	319.17	0.0062	19.9026	3.62913	345.17	337.17	0.01622	87.2919	7.5177	214.07	497.03	148.01	0.36395	1.7484	63.6151	33.333	20.513
306.17	317.17	0.00758	23.8877	4,11991	345.17	337.17	0.01622	87.2919	7.5177	242.53	497.03	161.07	0.44498	1.5563	60.8807	28.205	20.513
306.17	317.17	0.00896	28.231	4.59246	345.17	335.17	0.01623	86.0741	7,4971	270.35	494.94	172.63	0.52565	1.4114	58.5298	28.205	25,641
306.17	316.17	0.01034	32.2803	5.03113	345.17	334.17	0.01623	85.4683	7,4868	295.87	493.89	182.55	0.60649	1.2932	56.3937	25.641	28.205
305.17	315.17	0.01172	30.2548	5,44786	.545.17	354.17	0.01623	85.4683	7.4868	320.05	49.5.89	191.48	0.68747	1.1967	54,4766	25.077	28.205
206.12	221.12	0.00244	11.2062	3.40204	246.17	220.17	0.01621	% Acenc ac	10 - Water	System	400.11	111.00	0.20126	2.2014	70.6126	20.463	15.205
306.17	321.17	0.00344	11.2002	2.48380	345.17	339.17	0.01621	88.5174	7.5382	145.76	499.11	111.89	0.20126	2.3914	70.5136	38.402	15.385
306.17	320.17	0.00482	15.5467	3.08795	345.17	338.17	0.01621	87.9038	7.528	180.9	498.08	131.42	0.28174	2.0059	66,7326	33,897	17.949
306.17	319.17	0.0002	19.8081	3.02934	345.17	336.17	0.01622	86.082	7.3074	212.9	492.99	147.11	0.30214	1.7402	65.5856	33.333	25,077
306.17	317.17	0.00736	25.77.59	4.12019	345.17	333.17	0.01623	95 4693	7.4771	240.03	474.74	171.24	0.44200	1.3333	00.0302 C0 4600	28.203	22,041
306.17	316.17	0.00896	27.8405	4.28402	245.17	334.17	0.01623	85,4683	7,4808	207.5	493.89	171.54	0.52312	1.4075	56,3036	25.641	28.205
306.17	315.17	0.01034	36.0893	5.03152	345.17	339.17	0.01623	83.4683	7.4606	293.37	493.89	101.00	0.68404	1.2932	54.450	23.091	28.203
360.17	31.5.17	0.01175	30,0000	3.44633	545.17	333.11	2001024	% Aratic ar	id - Water	System	492.00	190,45	0.00404	1,17,00	34,433	233077	30.705
306.17	323.17	0.00346	10.8923	2.49942	345.17	342.17	0.01619	90.3674	7.5689	135.18	502.2	105.69	0.19167	2 1711	70.3553	43.50	7.6923
305.17	321.17	0.00484	14.9754	3.09895	345.17	341.17	0.0162	89,7494	7.5587	167.31	501.18	124.29	0.26836	1.9931	66.5896	38.462	10.256
306.17	321.17	0.00622	19.2541	3.64887	345.17	341.17	0.0162	89,7494	7.5587	197	501.18	139.96	0.34503	1.7456	63.5783	38.462	10.256
306.17	321.17	0.00761	23.5327	4.15725	345.17	340.17	0.0162	89.1327	7.5484	224.44	500.15	153.18	0.42161	1.5631	60.9854	38.462	12.821
306.17	320.17	0.00899	27.5639	4.62569	345.17	339.17	0.01621	88.5174	7.5382	249.5	499.11	164.35	0.49822	1.4188	58.6579	35,897	15.385
306.17	319.17	0.01038	31.5239	5.06754	345.17	339.17	0.01621	88.5174	7.5382	273.08	499.11	174.26	0.57495	1.3036	56,5903	33.333	15.385
306.17	318.17	0.01177	35.4149	5.48739	345.17	338.17	0.01621	87.9038	7.528	295.43	498.08	182.95	0.65156	1.2075	54.6999	30.769	17.949
							25	% Acetic ac	id – Water	System							
345.17	340.17	0.0162	89.1327	7.54843	306.17	323.17	0.00346	10.6511	2.5038	129.58	500.15	102.15	0.18673	2.3535	70.18	43.59	12.821
345.17	339.17	0.01621	88.5174	7.5382	306.17	321.17	0.00485	14.6445	3.1043	160.38	499.11	120.31	0.26143	1.9794	66.4367	38.462	15.385
345.17	338.17	0.01621	87.9038	7.52796	306.17	321.17	0.00624	18.8286	3.6552	188.84	498.08	135.57	0.33605	1.7348	63.4346	38.462	17.949
345.17	337.17	0.01622	87.2919	7.5177	306.17	320.17	0.00762	22.8095	4.1569	214.57	497.03	148.24	0.41068	1.5519	60.814	35.897	20.513
345.17	335.17	0.01623	86.0741	7.49714	306.17	319.17	0.00901	26.7215	4.6255	238.54	494.94	159.09	0.4852	1.4091	58.4899	33.333	25.641
345.17	334.17	0.01623	85.4683	7.48684	306.17	318.17	0.0104	30.567	5.0676	261.1	493.89	168.69	0.55979	1.2947	56.422	30.769	28.205
345.17	333.17	0.01624	84.8646	7.47651	306.17	317.17	0.01179	34.3482	5.4877	282.48	492.83	177.23	0.63437	1.2001	54.5472	28.205	30.769

IV. RESULTS AND DISCUSSION

5.1 COUNTER-CURRENT FLOW PATTERN 5.1.1 Effect Of N_{Re} (Cold) On Efficiency % (Cold) 5.1.1.1 Kerosene – Water System

From the above graph it can be observed that, as N_{Re} (cold) increases the efficiency (cold) decreases. The graph also shows that as the composition of kerosene increases the efficiency of cold side increases and then decreases gradually for same flow rate of cold fluid.

5.1.2 Acetic acid-water System

Fig. 5.2 Effect of cold side flow rate and composition on η_c of acetic acid-water system

It can be observed that, as flow rate of cold fluid increases the efficiency of cold side decreases. The graph also shows that as the composition of acetic acid increases the efficiency decreases for same flow rate of cold fluid. Maximum cold side efficiency is seen for 25% acetic acid -water system

5.1.2 Effect of N_{Re} (Cold) On Hot Side Efficiency (%) 5.1.2.1 Kerosene – Water System

Fig. 5.3 Effect of cold side flow rate and composition on η_h of kerosene-water system

From the graph Reynolds number of cold fluid Vs Hot side efficiency it can be observed that, as flow rate of cold fluid increases the efficiency of hot side gradually increases. When the flow rate on cold side is increased, heat transfer from hot to cold side is also increased. As the composition of kerosene increases from 9 % to 25 %, the efficiency of hot side decreases gradually for same flow rate of cold fluid.

5.1.2.2 Acetic Acid – Water System

Fig. 5.4 Effect of cold side flow rate and composition on η_h of acetic acid-water system

From the graph it can be observed that, as flow rate of cold fluid increases the efficiency of hot side gradually increases. When the flow rate on cold side is increased, heat transfer from hot to cold side is also increased. As the composition of acetic acid increases, the efficiency of hot side decreases for same flow rate of cold fluid.

5.2 CO-CURRENT FLOW PATTERN

5.2.1 Effect of N_{Re} (Cold) On Cold Side Efficiency (%)

5.2.1.1 Kerosene – Water System

Fig. 5.5 Effect of cold side flow rate and composition on η_c of kerosene-water system

From the above graph it can be observed that, as N_{Re} (cold) increases the efficiency (cold) decreases. The graph also shows that as the composition of kerosene increases the efficiency of cold side decreases gradually for same flow rate of cold fluid.

The graph shows that, as N_{Re} (cold) increases the cold side efficiency decreases. As flow rate of cold side is increased the cold side efficiency decreases. The graph also shows that as the composition of acetic acid increases the efficiency of cold side increases gradually, for the same flow rate of cold fluid.

5.2.2 Effect of N_{Re} (Cold) On Hot Side Efficiency (%) 5.2.2.1 Kerosene – Water System

Fig. 5.7 Effect of cold side flow rate and composition on η_h of kerosene-water system

From the graph Reynolds number of cold fluid Vs Hot side efficiency it can be observed that, as flow rate of cold fluid increases the efficiency of hot side gradually increases. When the flow rate on cold side is increased, heat transfer from hot to cold side is also increased. As the composition of kerosene increases, the efficiency of hot side decreases at first and later it increases gradually for same flow rate of cold fluid.

5.2.2.2 Acetic Acid – Water System

Fig. 5.8 Effect of cold side flow rate and composition on η_h of acetic acid-water system

From the graph Reynolds number of cold fluid Vs Hot side efficiency it can be observed that, as flow rate of cold fluid increases the efficiency of hot side gradually increases. When the flow rate on cold side is increased, heat transfer from hot to cold side is also increased. As the composition of acetic acid increases, the efficiency of hot side increases for same flow rate of cold fluid.

V. CONCLUSION

Experiments were conducted on a Plate type heat exchanger with different flow rates and compositions of cold side fluid in both co-current and counter-current flow pattern. The effect of these parameters on heat transfer coefficient, efficiency and effectiveness were studied and comparison was made between co-current and counter-current flow operation.

It was found that as the flow rate of cold fluid increases, Reynolds number increases thereby increasing the cold side heat transfer coefficient. Consequently the overall heat transfer coefficient also increases with increase in flow rate of cold fluid for both counter-current and co-current flow pattern. The graphs also show that as the composition of cold fluid increases the N_{Nu} number decreases gradually for immiscible system, and increases for miscible systems. Therefore the cold side heat transfer coefficient and overall heat transfer coefficient decreases for immiscible systems and increases for miscible systems.

For both counter-current and co-current flow pattern as N_{Re} (cold) increased the N_{Nu} (hot) decreased thereby, decreasing the heat transfer coefficient of the hot side. As the flow rate on cold side increased the heat transfer coefficient on hot side (h_h) decreased thereby decreasing the overall heat transfer coefficient but as the composition of cold fluid increases the heat transfer coefficient of hot side increases for the same flow rate of cold fluid

It was observed that the cold side efficiency and hot side efficiency for counter flow pattern is greater than the co-current flow pattern

From the results and discussion it can be concluded that, as flow rate of cold fluid increased the effectiveness gradually decreased. As the composition of cold fluid increased from 9% to 25%, the effectiveness of exchanger increased for immiscible systems and decreased for miscible systems for same flow rate of cold fluid for both counter current and co-current flow pattern.

Based on the overall results and discussion it was found that the overall heat transfer coefficient, hot side efficiency ,cold side efficiency and effectiveness was greater for counter current flow pattern when compared to cocurrent flow pattern.

Therefore it can be concluded that the counter-current flow pattern was efficient and feasible compared to co-current flow pattern irrespective of the type of cold fluid used.

APPENDIX I

MODEL CALCULATION Counter-Current Flow Pattern

Average temperature of cold fluid =	$\frac{\left(t_1 + t_2\right)}{2} = \frac{\left(304.17 + 323.17\right)}{2} = 313.67 \text{ K}$
Average temperature of hot fluid $=$	$\frac{(T_1 + T_2)}{2} = \frac{(347.17 + 332.17)}{2} = 339.67 \text{K}$
Logarithmic mean temperature difference	$= \frac{\left(\left(T_2 - t_2\right) - \left(T_1 - t_1\right)\right)}{\ln \frac{\left(T_2 - t_2\right)}{\left(T_1 - t_1\right)}}$ $= \frac{\left(\left(347.17 - 304.17\right) - \left(332.17 - 323.17\right)\right)}{\ln \frac{\left(347.17 - 304.17\right)}{\left(332.17 - 323.17\right)}}$
	= 21.739
Mass flow rate of cold fluid m _c	= Volumetric flow rate of cold fluid x Density = (12.5 x 10^-3 x 966.7414) / (60 x 60) Kg/sec = 0.0033567 Kg/sec
Mass flow rate of hot fluid m _h	= Volumetric flow rate of hot fluid x Density

 $= (1 x 10^{-3} x973.9417) / (60) Kg/sec$ = 0.016123 Kg/sec

Mass velocity of cold fluid

 $= 0.74593 \text{ Kg/m}^2 \text{sec}$

Mass velocity of hot fluid

= Mass flow rate / Flow area = 0.016123 / 0.0045 = 3.582888 Kg/m2sec

= 0.0033567 /0.0045

= Mass flow rate / Flow area

Dimensionless numbers for cold fluid,

Reynolds number N_{Re} =
$$\frac{(D_e V \rho)}{\mu}$$
 = $\frac{(0.01 \times 0.74593)}{0.000599}$
= 12.455
(3995.857 $\times 0.000599$)

Prandtl number $N_{Pr} = \frac{(c_p \mu)}{k}$

Nusselt number N_{Nu} =
$$(0.28)(N_{\rm Re})^{0.65}(N_{\rm Pr})^{0.4}$$

$$= (0.28)(12.455)^{0.65}(4.067)^{0.4}$$
$$= 2.52871.$$

= 4.067

0.588332

Dimensionless number for hot fluid,

Powelds number N = $(D_e V \rho)$	(0.01x0.016123)
Reynolds humber $N_{Re} = \frac{\mu}{\mu}$	0.000422
<i>/</i>	= 85.46826
$Product number N = (c_p \mu)$	(4194.033x0.000422)
Prandu number $N_{Pr} = \frac{k}{k}$	=
	= 2.683293

Nusselt number N_{Nu} = $(0.28)(N_{\rm Re})^{0.65}(N_{\rm Pr})^{0.4}$

Cold side heat transfer coefficient $h_{\rm c}$

Hot side heat transfer coefficient h_h

$$= (0.28)(85.46826)^{0.65}(2.6832)^{0.4}$$
$$= 7.486838$$

 $= (N_{Nu} x k) / (D_e)$ = (2.528571 x 0.588332) / (0.01) = 148.764 W/m²K

$$= (N_{Nu} x k) / (D_e) = (7.486838 x 0.659672) / (0.01) = 493.8858 W/m2K$$

Overall heat transfer coefficient $U_o = -$

$$=\frac{1}{\frac{1}{h_c}+\frac{x}{k}+\frac{1}{h_h}}$$

$$= \frac{1}{\frac{1}{148.764} + \frac{0.02}{273} + \frac{1}{493.8858}}$$

$$= 113.3777 \text{ W/m}^{2}\text{K}$$
Capacity rate ratio = Cmin / Cmax
 $C_{\min} = m_{c}xc_{pc} = 0.0033567 \text{ x } 3995.857 = 13.4129$
 $C_{\max} = m_{h}xc_{ph} = 0.016123 \text{ x } 4194.033 = 67.6203$
Capacity rate ratio = 13.4129 / 67.6203

$$= 0.1984$$
Number of transfer units $NTU = \frac{(U_{o}xA)}{C_{\min}}$
 $= (113.3777 \text{ x } 0.2925) / (13.4129)$
 $= 2.47244$
Cold side efficiency $\eta_{c} = \frac{(m_{c}xc_{pc}x\Delta T)}{(m_{c}xc_{pc}x\Delta T_{\max})} = \frac{(13.4129x19)}{(13.4129x43)} = 0.44186 = 44.186\%$
Hot side efficiency $\eta_{h} = \frac{(m_{h}xc_{ph}x\Delta T)}{(m_{h}xc_{ph}x\Delta T_{\max})} = \frac{(67.6203x15)}{(67.6203x43)} = 0.3488 = 34.88$
Effectiveness $\% = \frac{(NTU)}{(1 + NTU)}x100$
 $= \frac{(2.47244)}{(1 + 2.47244)}x100 = 71.202\%$

APPENDIX II

MODEL CALCULATION Co-Current Flow Pattern

Average temperature of cold fluid =
$$\frac{(t_1 + t_2)}{2} = \frac{(304.17 + 318.17)}{2} = 311.17 \text{ K}$$

Average temperature of hot fluid = $\frac{(T_1 + T_2)}{2} = \frac{(347.17 + 338.17)}{2} = 342.67 \text{ K}$
Logarithmic mean temperature difference = $\frac{((T_2 - t_2) - (T_1 - t_1))}{\ln \frac{(T_2 - t_2)}{(T_1 - t_1)}}$

	$=\frac{\left(\left(347.17-318.17\right)-\left(338.17-304.17\right)\right)}{\ln\frac{\left(347.17-318.17\right)}{\left(338.17-304.17\right)}}$
	= 31.433
Mass flow rate of cold fluid m _c	 Volumetric flow rate of cold fluid x Density = (12.5 x 10^-3 x 967.8842) / (60 x 60) Kg/sec = 0.003361 Kg/sec
Mass flow rate of hot fluid m _h	= Volumetric flow rate of hot fluid x Density = (1 x 10^-3 x 972.4119) / (60) Kg/sec = 0.016207 Kg/sec
Mass velocity of cold fluid	= Mass flow rate / Flow area = $0.003361 / 0.0045 \text{ Kg/m}^2 \text{sec}$ = $0.74689 \text{ Kg/m}^2 \text{sec}$
Mass velocity of hot fluid	= Mass flow rate / Flow area = 0.016207 / 0.0045 Kg/m ² sec = 3.60156 Kg/m ² sec

Dimensionless numbers for cold fluid,

Reynolds number N _{Re}	$=rac{\left(D_{_{e}}V ho ight)}{\mu}$	$=\frac{(0.01x0.003361)}{0.000628}$
Prandtl number N _{Pr}	$=rac{\left(c_{p}\mu\right)}{k}$	$= 11.8895$ $= \frac{(3993.66x0.000628)}{0.585352}$ $= 4.28556$
Nusselt number $N_{Nu} = (0)$	$(N_{\rm Re})^{0.65} (N_{\rm Pr})^{0.4}$	= 4.28536 = (0.28)(11.8895) ^{0.65} (4.2856) ^{0.4} = 2.50506
Dimensionless number	for hot fluid,	
Reynolds number N _{Re}	$=\frac{\left(D_{e}V\rho\right)}{u}$	$=\frac{(0.010x016207)}{0.000407}$

Reynolds number
$$N_{Re}$$
 = $\frac{(L_e \vee \mu)}{\mu}$ = $\frac{(0.010 \times 010207)}{0.000407}$
= 88.51743
Prandtl number N_{Pr} = $\frac{(c_p \mu)}{k}$ = $\frac{(4195.917 \times 0.000407)}{0.662113}$
= 2.5784
Nusselt number $N_{Nu} = (0.28)(N_{Re})^{0.65}(N_{Pr})^{0.4}$ = $(0.28)(88.51743)^{0.65}(2.5784)^{0.4}$
= 7.5382
Cold side heat transfer coefficient h_c = $(N_{Nu} \times k) / (D_e)$
= $(2.505061 \times 0.58535) / (0.01)$

= 146.6344W/m²K

Hot side heat transfer coefficient h_h

= $(N_{Nu} x k) / (D_e)$ = (7.5382 x 0.662113) / (0.01) = 499.114 W/m²K

Overall heat transfer coefficient
$$U_o = \frac{1}{\frac{1}{h_c} + \frac{x}{k} + \frac{1}{h_h}}$$

$$= \frac{1}{\frac{1}{\frac{1}{146.6344} + \frac{10^{-2}}{273} + \frac{1}{499.114}}}$$
$$= 112.4038 \text{ W/m}^2\text{K}$$

Capacity rate ratio = C_{min} / C_{max}

 $C_{\min} = m_c x c_{pc} = 0.0033361 \text{ x } 3993.663 = 13.42154$ $C_{\max} = m_h x c_{ph} = 0.016207 \text{ x } 4195.917 = 68.0027$

Capacity rate ratio

Number of transfer units

$$NTU = \frac{(U_o xA)}{C_{\min}}$$

= (112.4038 x 0.2925) / (13.4215)
= 2.449654

Cold side efficiency
$$\eta_c = \frac{(m_c x c_{pc} x \Delta T)}{(m_c x c_{pc} x \Delta T_{max})} = \frac{(13.42154x14)}{(13.42154x43)} = 0.3255814 = 32.558\%$$

Hot side efficiency
$$\eta_h = \frac{(m_h x c_{ph} x \Delta T)}{(m_h x c_{ph} x \Delta T_{max})} = \frac{(68.0027 x 9)}{(68.0027 x 43)} = 0.2093 = 20.93 \%$$

Effectiveness %
=
$$\frac{(NTU)}{(1 + NTU)} \ge 100$$

= $\frac{(2.4497)}{(1 + 2.44967)} \ge 100 = 71.011 \%$

REFERENCES

- [I]. Bipan Bansal, Hans Müller-Steinhagen, Xiao Dong Chen. (2000). 'Performance of plate heat exchangers during calcium sulphate fouling investigation with an in-line filter'. Chemical Engineering and Processing, Vol. 39, pp 507-519
- [2]. Garcia-Cascales J.R, Vera-Garcia F., Corberan-Salvador J.M., J.Gonzalvez-Macia. (2007). 'Assessment of boiling and condensation heat transfer correlations in the modelling of plate heat exchangers'. International Journal of Refrigeration. Vol.30, pp 1029 1041.
- [3]. Jameel Ur Rehman Khan ; Syed M. Zubair. , (2004) 'A Risk-Based Performance Analysis of Plate-andFrame Heat Exchangers Subject to Fouling: Economics of Heat Exchanger Cleaning'. Heat transfer engineering. Volume 25 , pages 87 100
- [4] Jorge A. W. Gut, José M. Pinto. (2003). 'Modeling of plate heat exchangers with generalized configurations'. International Journal of Heat and Mass Transfer, Vol. 46, Pages 2571-2585

- [5] Jorge A.W. Gut, Jose M. Pinto. (2004). 'Optimal configuration design for plate heat exchangers'. International Journal of Heat and Mass Transfer. Vol.47, pp 4833–4848.
- [6]. Kevin M. Lunsford,(1996). "Advantages of Brazed Heat Exchangers in the Gas Processing Industry". Proceedings of the Seventy-Fifth GPA Annual Convention. Tulsa, OK: Gas Processors Association, pp 218-226.
- [7]. Lamb B. R. (1982). 'Plate Heat Exchangers A Low-Cost Route To Heat Recovery'. Heat Recovery Systems Vol. 2. pp. 247-255,
- [8] Longo G.A., Gasparella A.. (2007). 'Refrigerant R134a vaporisation heat transfer and pressure drop inside a small brazed plate heat exchanger'. International Journal of Refrigeration. Vol. 30, pp 821–830.
- [9]. McNeill, V.F., Colton, C.K.,. 'Theory for Performance of the Flat Plate Heat Exchanger'
- [10]. Merheb B., Nassar G. Nongaillard B., Delaplace G., Leuliet J.C. (2007) 'Design and performance of a low-frequency non-intrusive acoustic technique for monitoring fouling in plate heat exchangers'. Journal of Food Engineering. Vol. 82, pp 518–527.
- [11]. Olaf Strelow. (2000). 'A general calculation method for plate heat exchangers'. International Journal of Thermal Sciences, Vol. 39, pp 645-658.
- [12]. Picon-Nunez M. And Martinez-Rodriguez G. And Lopez-Robles J. L. (2006). "Alternative Design Approach for Multipass and Multi-Stream Plate Heat Exchangers for Use in Heat Recovery Systems". Heat Transfer Engineering, Vol. 27, pp 12–21.
- [13]. Ribeiro C.P. Jr., Cano Andrade M.H.. (2002). 'An algorithm for steady-state simulation of plate heat exchangers'. Journal of Food Engineering. Vol. 53, pp 59–66.
- [14]. Saman W.Y and Alizadeh S. (2001). 'Modelling and performance analysis of a cross-flow type plate heat exchanger for dehumidification/cooling'. Solar Energy. Vol. 70, pp 361-372.
- [15]. Stamatiou E. and Kawaji M. (2003). "Heat Transfer Characteristics of Melting Ice Slurries in Compact Plate Heat Exchangers". 21st IIR International Congress of Refrigeration, August 17-22. USA.
- [16]. Warnakulasuriya F.S.K. and Worek W.M. (2008). '*Heat transfer and pressure drop properties of high viscous solutions in plate heat exchangers*'. International Journal of Heat and Mass Transfer. Vol.51, pp 52-67.

S.Ganapathy." Heat Transfer Studies On Plate Type Heat Exchanger Using Miscible And Immiscible Liquids" International Journal of Engineering Inventions, vol. 07, no. 06, 2018, pp. 44–62.