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Abstract: 

Proton exchange membrane fuel cell (PEMFC) systems are emerging as one of the most promising carbon-neutral 

transportation alternatives. Durability continues to be the key barrier to its widespread commercialization, 

nevertheless. The development of timely optimization strategies that increase the durability of PEMFC is 

facilitated by the establishment of an accurate model to forecast the aging state of the device. To solve the problem 

of predicting the life decline of PEMFC, this paper proposes a lifespan decline prediction method of proton 

exchange membrane fuel cell based on frequency enhanced decomposed transformer (Fedformer). This article 

establishes an experimental platform and conducts life testing on the PEMFC test platform, obtaining a mixed 

dataset consisting of a national standard operating condition degradation dataset and a real vehicle operating 

condition degradation dataset. The dataset was preprocessed through wavelet threshold denoising. Establishing 

a Fedformer model, by adding a fourier enhancement module based on Transformer, the frequency domain 

features of the data can be extracted, the prediction accuracy can be improved, and the prediction results can be 

compared and evaluated. The prediction results demonstrate the accuracy and universality of the proposed 

Fedformer based PEMFC life decline prediction method.  
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I. Introduction 

Due to the international economy's rapid growth, human consumption of energy is also increasing. 

Traditional fossil energy has been unable to meet human needs, and new energy is needed to replace traditional 

fossil energy [1–3]. Among them, fuel cells have become promising energy conversion equipment by converting 

electric energy through electrochemical reactions [4]. PEMFC is the mainstream product of fuel cells. In order to 

ensure its long-term and economic feasibility, it is very important to estimate the health status of PEMFC, and the 

most critical problem is to accurately predict its decline. This is also an important basis for the healthy prognosis 

of PEMFC [5, 6]. Nowadays, scholars at home and abroad have proposed various prediction methods to estimate 

the declining state of PEMFC. These strategies can generally be divided into two categories: model-based and 

data-driven [7, 8]. 

The model-based method generally and intuitively reveals the physical mechanism of internal 

degradation of fuel cells by establishing a series of mathematical equations, which can be divided into the 

establishment of an empirical model, a semi-empirical model, or a physical model of PEMFC, and the prediction 

of degradation can be realized through statistics, filtering, machine learning, and other methods [9–11]. Jouin et 

al. [12] proposed a voltage life degradation model considering all parameters of fuel cells and used different 

mathematical models based on time to describe the degradation rate of parameter variables. Hu et al. [13] 

proposed a fuel cell reconfiguration model for a hybrid electric city bus to predict its life. From the viewpoints of 

thermodynamics and economics, Chen et al. [14] established a new degradation model and investigated the 

changes in instantaneous voltage, degradation rate, electric power, and efficiency under various working currents 

and their effects on the life-cycle cost of battery packs. Mao et al. [15] proposed a method to predict the 

performance change of PEMFC by predicting the parameters of aging model. It is very challenging to develop a 

high-precision physical decay model because the decay solution of a fuel cell is a complicated multi-physical 

field coupling problem and is unobservable in many respects [16]. Some scholars call model-based and data-

driven methods hybrid methods, which combine the advantages of model-based and data-driven methods [17]. 

Zhou et al. [18] used the sliding window method to combine the nonlinear autoregressive neural network with the 
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voltage degradation model to realize the three steps of training verification prediction in each sliding window. 

Cheng et al. [19] proposed a residual service life prediction method based on least squares support vector 

machines and regularized particle filters. However, in most cases, the coupling of the two methods needs to 

establish a model with higher rationality, and the hybrid method still needs to understand the degradation 

mechanism of PEMFC in advance [20, 21]. Therefore, model-based, and data-driven hybrid methods are also 

classified as model-based prediction methods by most scholars. 

Different from the model-based method, the data-driven method can be regarded as a "black box" to 

build a high-order nonlinear relationship between input and output signals. The future decline state is based on 

the historical decline trend, and it is no longer necessary to use an accurate mathematical or analytical model to 

reveal the detailed degradation mechanism of PEMFC [22–24]. Data-driven strategies mainly study artificial 

intelligence models such as adaptive neurofuzzy inference system [25], echo state network [26], correlation vector 

machine [27], support vector machine [28], and Gaussian process state space mode [29]. Deep learning-based 

PEMFC prediction has drawn greater interest recently, such as in artificial neural networks [30] and long-term 

and short-term memory neural networks [31, 32]. Zuo et al. [33] compared the short-term voltage prediction 

effects of four deep learning methods: LSTM, gating cycle unit, attention-based LSTM, and attention-based Gru. 

Ma et al. [34] propose a fuel cell performance data fusion prediction method based on LSTM and ARIMA. Wang 

et al. [35] propose to use stacked LSTM to predict the short-term aging trend of fuel cells under dynamic 

conditions. stacked LSTM uses the differential evolution algorithm to optimize various parameters in LSTM. Ma 

et al. [36] proposed a Grid LSTM model to predict the aging trend of fuel cells under constant conditions and 

verified the model with 1 kW, 1.2 kW, and 25 kW fuel cells, respectively. 

One of the research areas of PEMFC life decline is the investigation of more accurate forecast techniques. 

Additionally, the procedures' efficacy and accuracy need to be increased. The Fedformer introduced in this paper 

is based on the transformer model, which adds the Fourier enhancement module. To increase the model's 

prediction accuracy, it uses frequency domain data after the Fourier transform for feature extraction rather than 

applying the transformer to the time feature extraction. At present, most of the aging prediction studies are carried 

out in a centralized way based on the data obtained under the same working conditions, without considering the 

universality of the prediction model. The aging life test of PEMFC before leaving the factory does not necessarily 

use the real vehicle's working conditions, or it will be different from the driver's habits. Therefore, the training 

data may not be generated under the same working conditions. Therefore, this paper uses the aging data of national 

standard working conditions as the training data. In order to assess the model universality of LSTM and Fedformer, 

aging data from actual car operating situations are used as training data. The following are the primary innovations 

in this paper: 

1) In contrast to LSTM and other models, which focus on data features from a time domain perspective, 

Fourier enhancement module of Fedformer can extract features from a frequency domain perspective, preprocess 

the data set with wavelet threshold de-noising, decompose and filter noise and unknown interference, and de-

noise the input data set. These features all work to increase the predictive accuracy of the model. 

2)The data set in this paper combines the aging parameters of the same test bench under two different 

working conditions. It is demonstrated that the model trained by Fedformer has strong universality by using the 

parameters of national standard working circumstances to estimate the aging trend of PEMFC under real car 

working settings. 

The remainder of this essay is structured as follows: The experimental data set is preprocessed and 

experimental settings are established in Section 2 in order to gather data for the life test. Section 3 introduces the 

framework structure and discusses the predicted results. The conclusion can be found in Section 4. 

 

II. PEMFC life test and data set preprocessing 

The 90kw PEMFC test bench used in this experiment is shown in Fig. 1, which is mainly composed of 

four parts: an air supply device, a cooling circulation device, an electronic load, and a data acquisition device. 

Fig. 1 (a) is the structural diagram of a simplified test bench; Fig. 1 (b) is the physical diagram of the test bench, 

which can be utilized for testing PEMFC's long-term dynamic durability and polarization. The following is a brief 

introduction to each part: ①gas supply device: during the operation of the PEMFC stack, the gas supply device 

needs to provide reaction gas continuously. In this experiment, the gas supply device is divided into a hydrogen 

supply device and an air supply device. The hydrogen is produced by the hydrogen storage tank and supplied by 

the hydrogen storage tank after the air has been compressed, filtered, and stored in the gas storage tank. ② 

Keeping the PEMFC stack within the required temperature range is necessary for normal operation of the cooling 

circulation system, usually 30 °C–80 °C. When the temperature of the stack is low at the beginning of operation, 

the water tank will automatically raise the temperature, and the heated deionized water will flow into the stack 

through the water pump to raise the temperature. When the stack temperature is too high, the circulating water 

flows through the cooling pipe and the water pump to cool it down. ③Electronic load: it is vital to employ an 

external electronic load who’s current, voltage, and power range must be higher than the stack itself in order to 
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satisfy the experimental design and imitate the real load conditions to test the performance and deterioration of 

the PEMFC. ④Data acquisition device: in order to keep track of the stack's current condition immediately, the 

test bench is required to be able to collect PEMFC data in real time. After the bench is started, it will automatically 

collect data; all collected data will be stored in the background, and important information will be displayed on 

the main control interface in real time. The main data collected by the system include stack voltage, current, power, 

gas temperature, pressure, circulating water temperature and flow, and many other variables. 

 

 
Fig. 1. PEMFC System (a) Schematic diagram of PEMFC system composition (b) PEMFC Test Bench 

 

The working conditions used in the experiment are shown in Fig. 2. The experiment is split into two 

sections. The first part of the 2000h durability experiment uses the GB/T 38914-2020 vehicle proton exchange 

membrane PEMFC stack service life test evaluation method, and the second part of the 500h durability experiment 

uses the CLTC-P China passenger vehicle driving cycle for testing. The GB/T 38914-2020 evaluation technique 

for the service life of PEMFC stacks for cars includes idle, start-stop, rated, and variable load conditions. In the 

experiment, the test is carried out in the order of these four conditions. Each condition has an operation cycle of 

4 hours, and after every 4 hours of operation, shut down and rest for 1 hour. The driving cycle length of the CLTC-

P Chinese passenger car is 1800km. By disrupting and reorganizing the driving cycle, it is combined into 1000 

driving cycles, forming a 500-hour driving cycle for the CLTC-P Chinese passenger car. The working condition 

composition diagram of the article is shown in Fig. 2. 
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Fig. 2. Composition of Working Conditions 

 

Input 2000h of national standard working conditions and 500h of CLTC-P working conditions into the 

test bench for the life test and obtain data. Parameters in the data set include stack voltage, current, cathode 

temperature, anode temperature, cathode pressure, anode pressure, cathode flow, anode flow, the inlet and outlet 

temperature of cooling water, the flow of cooling water, and other variables of the PEMFC stack. This experiment 

draws and describes the attenuation trend and polarization curve of the output voltage. The polarization curve of 

the experimental results is shown in Fig. 3. When the control current density is 0.9 A/cm2 and the time nodes are 

0h, 500h, 1000h, 1500h, 2000h, and 2500h, respectively, the stack voltage is 246V, 239V, 233V, 227V, 222V, and 

220V, respectively. It is discovered that when stack operation time increases, stack voltage falls.  

 

 
Fig. 3. Polarization Curve (a) Variation of Stack Voltage and Power Density 

(b) polarization curve with time 

 

Next, the data set is preprocessed. Since the first 2000h of the data set is the accelerated life test data 

obtained according to the national standard operating conditions and the machine is frequently switched on and 

off, the data waveform has more ups and downs, so it is necessary to use wavelet threshold denoising to denoise 

the data set, which can make the subsequent neural network have a better training effect. The main idea is to use 

the characteristic that the amplitude of the wavelet coefficients of the signal is greater than that of the noise after 

multi-scale wavelet decomposition of the noisy signal to extract the wavelet coefficients of the original signal. 
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Create an artificial threshold, preserve all wavelet coefficients above the threshold, and set the wavelet coefficients 

whose amplitude is below the threshold to 0. 

Using the wavelet denoising toolbox of MATLAB, set the parameter wavelet base to db5, the 

decomposition level to 8, the denoising method to minimax, the threshold rule to soft threshold, and the threshold 

of each level to the default value. For the operation data denoising of the PEMFC stack, the waveform comparison 

of the PEMFC stack voltage before and after denoising is shown in Fig. 4. The figure shows how the wavelet 

threshold denoising algorithm can successfully remove the noise in the original data while keeping the stack's 

decay information. The comparison curve of PEMFC average single cell voltage and internal resistance decay 

before and after denoising is shown in Fig. 4. 

 

 
Fig. 4. Waveform comparison before and after denoising(a) Average single cell voltage (b) Internal 

resistance 

III. Modeling and forecasting based on Fedformer 

3.1 Fedformer model building 

Fedformer is based on the Transformer model. While inheriting the parallel computing ability of 

Transformer, it can extract the frequency domain characteristics of data and enhance the prediction accuracy by 

adding a Fourier enhancement module based on Transformer. The structure of Fedformer is composed of n 

encoders and m decoders, as shown in Figure 5, which is the structural schematic diagram of Fedformer. 
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Fig. 5. Schematic Diagram of the Fedformer Structure 

 

The encoder in Fig. 5 adopts a multi-layer structure as follows: 
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The decoder in Fig. 5 also adopts a multi-layer structure, as follows: 
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Where 
,l i

deS , 
,l i

deT , i∈{1, 2, 3} respectively, represent the seasonal component and trend component after 

the i-th decomposition block of the first layer. ,l iW . i∈{1, 2, 3} represents the trend 
,l i

deT  extracted for the i-th 

time. 

In Fedformer, one of the most important problems is which frequency division quantum set is used for 

Fourier analysis. Retaining low-frequency and discarding high-frequency components is a typical approach, but 

this may not be appropriate for time series prediction because some trend changes in time series are connected to 

significant events. This portion of the information can be lost if all high-frequency components are simply deleted. 

According to the theoretical analysis of Zhou et al. [38], the random selection of frequency division quantum sets, 

including low-frequency components and high-frequency components, can better represent the time series. 

The data set used in this paper is divided into two parts: the first 2000h data set is obtained from the life 

test experiment required by the national standard, and the last 500h data set is the aging data set, which, in order 

to replicate the operation of the actual vehicle, was put together in accordance with the CLTC-P working 

conditions. Use the aging data of the first 2000h under the national standard working condition for model training, 

and then use the aging data of the last 500h under the real vehicle working condition for prediction. This is to 

better simulate the aging test of PEMFC using national standard conditions before leaving the factory, and the 

actual operation is closer to the characteristics of real vehicle conditions. The overall structure of the article is 

shown in Fig. 6. 
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Fig.6. overall structure of the article 

 

The LSTM configuration employed in this study has the following parameters: a hidden layer with 128 

neurons; a loss function of average absolute error; an optimizer named Adam; an epichs of 100; a batch size of 

20; and a learning efficiency of 0.005. The Fedformer neural network code used in this paper is public data, and 

refers to the code used in Zhou et al. [38]. Because the use of national standard working conditions as the training 

set and the actual working conditions as the prediction data may significantly affects the outcome of the prediction, 

this paper not only predicts the complete data set under 2500h but also predicts the national standard working 

conditions under 2000h in advance and compares neural network prediction results under the two data sets. For a 

separate 2000hour national standard working condition data set, 80% of the data is selected as training data, and 

20% of the data is selected as prediction data. 

 

3.2Comparison and discussion of prediction results 

In this paper, the machine learning prediction model's prediction ability is assessed using the root mean 

square error (RMSE) and mean absolute percentage error (MAPE). The greater the model's ability to forecast 

outcomes is, the closer the values of RMSE and MAPE are to 0. The two indicators' calculating formula is as 

follows: 

 
n

2

i i

t 1

1
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Where iŷ is the model output value and yi is the measured value of the aging voltage. 

 

Fig. 7(a) shows the LSTM model's forecasting outcomes trained with the previous 1600h data on the test 

data, and Fig. 7(b) shows the Fedformer model's forecasting outcomes trained with the previous 1600h data on 

the test data. The forecasting outcomes for the next 400 hours were verified and contrasted with the actual results. 

As illustrated in Fig. 7, the LSTM model's maximum prediction error is 0.0112V, and the Fedformer model's 

maximum prediction error is 0.0008V. Compared with the LSTM model, the developed Fedformer model has 

better prediction performance under the 2000h voltage decay data set.  
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Fig. 7. 2000h voltage data set (a) LSTM prediction results (b) Fedformer prediction results 

 

Fig.8(a) shows the LSTM model's forecasting outcomes trained with the data of the previous 2000h on 

the test data, and Fig.8(b) shows the Fedformer model's forecasting outcomes trained with the data of the previous 

2000h on the test data. The forecasting outcomes for the next 500 hours were verified and contrasted with the 

actual results. As illustrated in Fig. 8, the LSTM model's maximum prediction error is 0.01V, and the Fedformer 

model's maximum prediction error is 0.0012V. Compared with the LSTM model, the developed Fedformer model 

has better prediction performance in the 2500h voltage decay data set. 
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Fig. 8. 2500h voltage data set (a) LSTM prediction results (b) Fedformer prediction results 

 

Fig. 9(a) shows the LSTM model's forecasting outcomes trained with the previous 1600h data on the test 

data, and Fig. 9(b) shows the Fedformer model's forecasting outcomes trained with the previous 1600h data on 

the test data. The forecasting outcomes for the next 400 hours were verified and contrasted with the actual results. 

As illustrated in Fig. 9, the LSTM model's maximum prediction error is 0.0021Ω, and the Fedformer model's 

maximum prediction error is 0.0007Ω. Compared with the LSTM model, the developed Fedformer model has 

better prediction performance under the 2000h reactor internal resistance decay data set. 
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Fig. 9. 2000h internal resistance data set (a) LSTM prediction results (b) Fedformer prediction results 

 

Fig. 10(a) shows the LSTM model's forecasting outcomes trained with the previous 2000h data on the 

test data, and Fig. 10(b) shows the Fedformer model's forecasting outcomes trained with the the previous 2000h 

data on the test data. The forecasting outcomes for the next 500 hours were verified and contrasted with the actual 

results. As illustrated in Fig. 10, the LSTM model's maximum prediction error is 0.0039Ω, and the Fedformer 

model's maximum prediction error is 0.0007Ω. Compared with the LSTM model, the developed Fedformer model 

has better prediction performance under the 2500h stack internal resistance decay data set. 
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Fig. 10. 2500h internal resistance dataset (a) LSTM prediction results (b) Fedformer prediction results 

 

This research employs root means square error and average absolute error as evaluation criteria to 

describe the prediction performance of LSTM more intuitively and Fedformer under varied data sets. The average 

absolute error of voltage is shown in Fig. 11(a). Under the 2000h data set and the 2500h data set, the average 

absolute error of the Fedformer is much less than that of the LSTM. The voltage's root mean square error is shown 

in Fig. 11(b). Like the average absolute error of voltage, the root mean square error of the Fedformer is less than 

LSTM. When LSTM predicts the 2000h data set and the 2500h data set, the root mean square error and average 

absolute error of the 2500h data set are greater than those of the 2000h data set. The reason is that the data of the 

last 500 h in the 2500h are obtained from the real vehicle conditions, which are different from the data of the 

previous 2000h national standard conditions. In contrast, for different data sets, the root means square error and 

mean absolute error of the prediction results of Fedformer are almost the same. In conclusion, it can be proved 

that Fedformer has better prediction accuracy and model universality than LSTM. 
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Fig. 11 comparison between root mean square error and mean absolute error 

 

IV. Conclusion 

The collected degradation time series data set is integrated with a machine learning method in this paper 

to forecast the voltage degradation and internal resistance deterioration of automobile PEMFC. The established 

prediction model has been verified and successfully used in short-term voltage attenuation prediction and short-

term internal resistance attenuation prediction. The main research results of this paper are as follows: 

(1) The PEMFC life-aging experiment was designed. The experimental national standard condition and the 

real vehicle condition were established, respectively. The national standard condition and real vehicle condition 

were input into the experimental bench, and the 2000-hour national standard condition aging data set and the 500-

hour real vehicle condition aging data set were obtained. 

(2) By comparing the prediction results of LSTM and Fedformer under the same data set, the MAPE and 

RMSE of Fedformer voltage under the 2500h data set are 0.0006 and 0.0005, the LSTM are 0.011 and 0.008, it 

is found that the prediction error of Fedformer is much smaller than that of LSTM, which demonstrates that the 

Fedformer prediction model outperforms the LSTM. 

(3) By taking the 2000hour national standard condition aging data set as the training data, the life aging trend 

of PEMFC under 500hour real vehicle conditions is predicted. The MAPE and RMSE of the Fedformer voltage 

under 2500h are 0.0006 and 0.0005, under 2000h are 0.0005 and 0.0004. It is found that the prediction errors of 

Fedformer under different data sets are almost the same, which proves that the Fedformer prediction model is 

universal. 
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