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ABSTRACT: Gears are essential components of mechanical equipment. Accurate estimation of Remaining Useful 

Life (RUL) not only enhances equipment reliability and reduces maintenance costs, but also significantly improves 

economic efficiency and safety in industrial production. Recurrent Neural Networks (RNNs) are particularly adept 

at handling time series data, effectively capturing patterns and trends during gear operation. However, RNNs 

often face challenges such as gradient explosion and vanishing, which can adversely affect model training effec-

tiveness and stability. The Gated Recurrent Unit (GRU) model addresses these gradient issues inherent in RNNs. 

Hyperparameters have a direct impact on model performance and training outcomes. Typically, hyperparameter 

selection relies on manual tuning by researchers, which often fails to identify the optimal combination, resulting 

in diminished prediction accuracy. Thus, this paper introduces a method for predicting RUL that utilizes the Grey 

Wolf Optimizer (GWO) to optimize the hyperparameters of the GRU model. The main research focuses include: 

(1) Given the long degradation period of gears and the large amount of data, 17-dimensional time-frequency 

domain feature data are extracted. This approach not only reduces data volume but also better characterizes gear 

degradation trends, with data processed using the Sliding Window Method (SWM) to create training and test sets; 

(2) The GWO algorithm is utilized to determine optimal hyperparameter combinations for the GRU model, and 

the performance of this optimized model is compared with that of other models. Experimental results demonstrate 

that the GWO-GRU model significantly enhances prediction accuracy compared to alternative models, thereby 

validating the effectiveness of the proposed method. 
Key words: Gears; Remaining Useful Life; Grey Wolf Optimizer; Gated Recurrent Unit; Hyperparameters, 

Multi-feature input 
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I. INTRODUCTION 

Gears are crucial components in various mechanical systems, including industrial machines, automotive 

gearboxes, power transmission systems, and aerospace applications [1]. The performance and reliability of these 

systems are often directly influenced by the condition of their gears. Over time, gears experience degradation due 

to factors such as material fatigue, wear, lubrication issues, and external loads, all of which can lead to failures if 

not monitored and managed properly [2]. Consequently, predicting the RUL of gears has become an essential task 

in modern industrial maintenance practices. Accurate RUL prediction can significantly improve the operational 

reliability of machinery, reduce maintenance costs, and prevent unexpected downtime, which can be particularly 

costly in critical applications such as aircraft engines, manufacturing lines, and heavy-duty machinery[3]. 

Traditional methods of RUL prediction for gears primarily rely on statistical techniques, physical mod-

eling, or expert-driven rules. These methods typically assume predefined degradation patterns and often struggle 

to handle complex, non-linear failure modes [4]. As a result, they are limited in their ability to provide accurate 

and real-time predictions for gears operating under varying conditions. In recent years, machine learning (ML) 

and deep learning (DL) techniques have emerged as promising alternatives for RUL prediction due to their ability 

to learn complex patterns directly from data without the need for explicit assumptions about the failure process 

[5]. Among the various ML techniques, time-series models, particularly RNNs, have gained significant attention 

for their ability to model sequential data and capture the temporal dependencies inherent in the degradation [6]. 

In addition, hyperparameters significantly influence the model’s performance and training outcomes in 

neural network modeling. The selection of hyperparameters typically relies on the manual debugging methods 

employed by researchers, which often fail to yield the optimal combination of hyperparameters [7]. Intelligent 

optimization algorithms are increasingly favored for model parameter optimization due to their strong global 
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search capabilities, which enable them to escape local optima and identify global solutions. However, conven-

tional methods like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have notable limitations. 

Both GA and PSO are prone to issues arising from a large number of input parameters, which can make the search 

process computationally expensive and time-consuming. Furthermore, these algorithms exhibit high sensitivity to 

parameter selection and initial conditions, often leading to suboptimal solutions or slow convergence [8]. 

Long Short-Term Memory (LSTM) networks, an advanced variant of RNNs, have shown exceptional 

performance in handling sequential data, especially when dealing with long-term dependencies\cite{lable18}. 

Zheng S et al.[9] proposed a LSTM model for RUL prediction, capable of leveraging the full sequence of sensor 

data and uncovering latent patterns across different operating conditions, fault scenarios, and degradation pro-

cesses. Yousuf S et al.[10] proposes an LSTM-based regression model for predicting the RUL of Ring Oscillator 

circuits, utilizing essential electrical features and demonstrating high prediction accuracy with minimal deviation. 

Xiang S et al.[11] proposed an LSTMP-A model that enhances gear remaining life prediction accuracy by fusing 

time-domain and frequency-domain features with an attention-based weight amplification mechanism. LSTM 

uses a gating mechanism to mitigate the issues of vanishing and exploding gradients that traditional RNNs often 

face, making them effective for modeling complex patterns in data [12]. From the perspective of network archi-

tecture, LSTM networks consist of three gates: the input gate, the forget gate, and the output gate. These gates 

enable more precise control over the flow and retention of information. However, when predicting the remaining 

lifespan of gears, it is often necessary to analyze time series data with multiple features. This complexity demands 

more intricate structures, which can lead to reduced computational efficiency. Additionally, when handling multi-

feature data, LSTM networks require a greater number of parameters, increasing the likelihood of overfitting. 

The GRU has emerged as a promising alternative for gear RUL prediction to overcome these shortcom-

ings. Liu H et al.[13] proposed a RUL perdition method based GRU, validated it with experimental data from 

three sources and showed better performance compared to related literature by addressing existing issues. Sadiqa 

Zohra et al.[14] proposed hybrid CNN-GRU model for life prediction of lithium-ion batteries, which effectively 

improves the prediction accuracy. Wen L et al.[15] proposed a method for predicting the remaining life of bearings 

that combines GRU and Wiener process, and demonstrated through experiments that it outperforms other deep 

learning methods, highlighting the practical application of information fusion principles in bearing health assess-

ment. Although the GRU offers advantages over LSTM networks in terms of model simplicity and computational 

efficiency, its performance is still highly dependent on the selection of optimal hyperparameters [16]. To address 

this challenge, integrating optimization algorithms, such as the GWO, can significantly improve the performance 

of GRU models by automating the hyperparameter selection process. GWO is a nature-inspired optimization al-

gorithm that mimics the social hunting behavior of grey wolves. It has shown remarkable effectiveness in solving 

various optimization problems by efficiently exploring the parameter space and avoiding local optima. 

To achieve more accurate predictions of the residual life of gear, multiple features from both the time 

and frequency domains are typically utilized. When a GRU model encounters multi-feature inputs, the parameter 

space becomes increasingly complex. The GWO algorithm demonstrates strong global search capabilities, ena-

bling it to effectively navigate this high-dimensional parameter space. Moreover, predicting the residual life of 

gears often necessitates timely results to inform maintenance decisions. The GWO algorithm converges at a rela-

tively rapid rate, facilitating the identification of optimal GRU parameters in a shorter timeframe. This indicates 

that an effective prediction model can be established more quickly, allowing for the early initiation of residual life 

predictions for gears. 

This paper proposes the use of GWO to optimize the hyperparameters of the GRU model as figure 1 

shown. By leveraging the search capabilities of GWO to identify the optimal hyperparameter configuration, the 

performance of the GRU model can be significantly improved without the need for manual tuning. This approach 

combines the strengths of GRU in capturing sequential patterns and the efficiency of GWO in optimizing complex 

models, resulting in a powerful tool for accurate and reliable RUL prediction for gears. 

This paper is organized as follows: Section II describes the related background; Section III presents the 

extracted 17-dimensional features and discusses the GWO hyperparameter optimization algorithm for the GRU 

model; Section IV details the experimental setup and evaluates the model’s advantages compared to other models 

using the same data; finally, Section V provides the conclusion of the paper. 
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Fig. 1 GWO-GRU Model Flowchart 
 

 

II. BACKGROUND 

GRU Neural Network 

The GRU network model introduced by Cho et al.[17] in 2014. The  model consists of two inputs and 

one output: the two inputs are the input value 𝑋𝑡 at time 𝑡 and the hidden state 𝐻𝑡−1 at the previous time 𝑡 − 1; 

the outputs are the hidden state 𝐻𝑡  at time 𝑡; the reset gate 𝑅𝑡, the update gate 𝑍𝑡, and a candidate hidden state 𝐻̃𝑡. 

The internal structure of the GRU model is shown in Fig. 2. 

 

 
Fig. 2 Basic Structure Diagram of GRU 
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According to the information flow transfer path of the GRU model, we first need to calculate the update 

gate 𝑍𝑡 and reset gate 𝑅𝑡 , which are shown in the following formulas: 

𝑅𝑡 = 𝜎(𝑊𝑟𝑥𝑋𝑡 + 𝑊𝑟ℎ𝐻𝑡−1 + 𝑏𝑟) 

𝑍𝑡 = 𝜎(𝑊𝑧𝑥𝑋𝑡 + 𝑊𝑧ℎ𝐻𝑡−1 + 𝑏𝑧) 

where 𝜎 is the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation function, 𝑊𝑟𝑥,𝑊𝑧𝑥  and 𝑊𝑟ℎ,𝑊𝑧ℎ denote the input value 𝑋𝑡  and the 

weight parameter of the hidden state 𝐻𝑡−1corresponding to the reset gate and the update gate, and 𝑏𝑟 , 𝑏𝑧 is the bias 

value of the corresponding gating structure. Next, the candidate hidden state 𝐻̃𝑡 is computed for calculating the 

hidden state for the next time period, and its calculation formula is shown below: 

𝐻𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑋𝑡 + 𝑊ℎℎ(𝑅 ⊙ 𝐻𝑡−1) + 𝑏ℎ) 

𝑊ℎ𝑥 ,𝑊ℎℎ are the weight parameters of the candidate hidden state, 𝑡𝑎𝑛ℎ is the hyperbolic tangent activa-

tion function, 𝑏ℎ is the bias value of the candidate hidden state, and ⊙ is the Hadamard product. The role of the 

reset gate 𝑅𝑡 is used to control whether the candidate hidden state 𝐻̃𝑡 is dependent on the hidden state of the pre-

vious time period 𝐻𝑡−1. When 𝑅𝑡 = 0, the hidden state 𝐻𝑡−1 of the previous time period is discarded, while the 

hidden state of the previous time period is retained when 𝑅𝑡 ≠ 0, and the larger the value of 𝑅𝑡, the more infor-

mation is retained. 

Finally, the two values of gate 𝑍𝑡 and 𝐻𝑡candidate hidden state 𝐻𝑡are updated to compute the hidden 

state Ht for use in the output layer, which is computed as shown below: 

𝐻𝑡 = 𝑍𝑡 ⊙ 𝐻𝑡−1 + (1 − 𝑍𝑡) ⊙ 𝐻̃𝑡 

The update gate 𝑍𝑡 controls how much historical information is retained by the hidden state 𝐻𝑡  from the 

previous moment and how much information is received from the candidate hidden state 𝐻𝑡, and finally integrates 

the two into a single output to the hidden state 𝐻𝑡  at the current moment. 
 

GWO algorithm 

The GWO algorithm, introduced by Mirjalili et al. [18] in 2014, is an intelligent optimization algorithms 

that emulates the hunting behavior of gray wolves. This algorithm is distinguished by its minimal parameter re-

quirements and improved convergence capabilities. Gray wolves are social animals that live in packs, where a 

strict hierarchy governs their interactions. Each level of the pack has specific roles and responsibilities, allowing 

for seamless cooperation during hunting activities. Figure 3 illustrates the social hierarchy within wolf packs. 

 
 

Fig. 3  Gray wolf social class stratification 

 

The gray wolf social system is generally composed of four levels 𝛼, 𝛽,  𝛿 and 𝜔. where a represents the 

position of the alpha wolf, the leader of the pack responsible for guiding the hunt. This position signifies the 

optimal solution in the optimization algorithm, corresponding to the highest fitness value; 𝛽 wolves are the subop-

timal solution in the algorithm, with the second highest fitness; 𝛿 wolves are the third tier of the pack, which 

represents the third-best solution in the algorithm, with the third-highest fitness value; The fourth layer of the wolf 

pack, 𝜔, denotes all individuals in the pack except 𝛼, 𝛽, and 𝛿, with 𝛼, 𝛽, and 𝜔 leading 𝜔 to complete the posi-

tion update. Therefore, 𝛽, 𝛿 are generally denoted as the leading wolves. The whole arithmetic process of the gray 

wolf optimization algorithm can be divided into: 

During hunting, wolves can pinpoint the location of their prey and encircle them. This behavior can be 

simulated by mathematical modeling with the following equation: 

𝐷⃑⃑ = |𝐶 ∗ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| 

𝐷⃑⃑ = |𝐶 ∗ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| 

where t denotes the number of iterations, 𝐴 and 𝐶  denote the coefficient vectors, 𝑋 𝑝 denotes the position 

vector of the prey, and 𝑋  denotes the position vector of the gray wolf. Where 𝐴, 𝐶  are calculated as shown below: 

𝐴 = 2𝑎 ∗ 𝑟1⃑⃑⃑  − 𝑎  

𝐶 = 2𝑟2⃑⃑  ⃑ 

where 𝑎 a  is decreasing with the number of iterations, decreasing linearly from 2 to 0, and 𝑟1⃑⃑⃑  , 𝑟2⃑⃑  ⃑ denotes 

a random number between 0 and 1. 
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GWO is used in practice because the optimal solution for its location is always unknown, under the 

leadership of the 𝛼 wolf king and 𝛽 , 𝛿 wolves help the wolf king 𝛼 to determine the location of the pack and 

direct the 𝜔 wolves to update their locations to complete the hunt. The following equation describes this behavior: 

𝐷⃑⃑ 𝛼 = |𝐶 1 ∗ 𝑋 𝛼 − 𝑋 | 

𝐷⃑⃑ 𝛽 = |𝐶 2 ∗ 𝑋 𝛽 − 𝑋 | 

𝐷⃑⃑ 𝛿 = |𝐶 3 ∗ 𝑋 𝛿 − 𝑋 | 

𝑋 1 = 𝑋 𝛼 − 𝐴 1 ∗ (𝐷⃑⃑ 𝛼) 

𝑋 2 = 𝑋 𝛽 − 𝐴 2 ∗ (𝐷⃑⃑ 𝛽) 

𝑋 3 = 𝑋 𝛿 − 𝐴 3 ∗ (𝐷⃑⃑ 𝛿) 

𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 

where 𝑋 𝛼, 𝑋 𝛽, 𝑋 𝛿  denote the positions of 𝛼, 𝛽, 𝛿 wolves at the current moment, 𝑋 1, 𝑋 2, 𝑋 3 denote the 

distances and directions that the 𝜔  wolves need to move towards the first three wolves, 𝑋 𝑡 and 𝑋 𝑡+1 denote the 

final positions of the current individual and the current individual in this iteration, 𝐷⃑⃑ 𝛼, 𝐷⃑⃑ 𝛽, 𝐷⃑⃑ 𝛿 denote the distances 

between the head wolf and the current individual. 𝐴 1, 𝐴 2, 𝐴 3, 𝐶 1, 𝐶 2, 𝐶 3denote the coefficient vectors. 

 

III. GWO-GRU model prediction methods 

 

 

Time and frequency features 

To address noise interference in the original vibration signals, wavelet denoising preprocessing was ap-

plied to the collected signals. Statistical characteristics were extracted as features from both the time domain and 

frequency domain, using samples of a specific signal length. A total of thirteen time-domain features and four 

frequency-domain metrics were identified to construct the dataset [19], where 𝑡1 to 𝑡 13 represent the time-domain 

features, and 𝑓1 to 𝑓4 represent the frequency-domain features. The frequency-domain features were derived by 

applying a Fast Fourier Transform to the vibration signals, generating the frequency spectrum and envelope spec-

trum, from which the relevant features were extracted. Table 1 lists the names and calculation formulas of these 

time-domain and frequency-domain features. The rationale for selecting these specific features is elaborated be-

low: 

Table 1: Time-DomainandFrequency-DomainFeatureExtraction 
Name Formula Name Formula 

Peak-to-peak 𝑡1 = 𝑀AX|𝑥(𝑖)| − 𝑀𝐼𝑁|𝑥(𝑖)|  ClearanceFactor 𝑡10 = 𝑀𝐴𝑋|𝑥(𝑖)|/(
1

𝑁
∑ |𝑥(𝑖)|1/2𝑁

𝑖 )2  

Peak 𝑡2 = 𝑀𝐴𝑋|𝑥(𝑖)|  SkewnessFactor 
𝑡11 =

1

𝑁
∑ |𝑥(𝑖)|3𝑁

𝑖 /(√
1

𝑁
∑ 𝑥(𝑖)2𝑁

𝑖 )3  

Mean 𝑡3 =
1

𝑁
∑ 𝑥(𝑖)𝑁

𝑖   KurtosisFactor 
𝑡12 =

1

𝑁
∑ |𝑥(𝑖)|4𝑁

𝑖 /(√
1

𝑁
∑ 𝑥(𝑖)2𝑁

𝑖 )4  

Variance 𝑡4 =
1

𝑁
∑ (𝑥(𝑖) − 𝑥)2𝑁

𝑖   WaveformFactor 
𝑡13 = √

1

𝑁
∑ 𝑥(𝑖)2𝑁

𝑖 /
1

𝑁
∑ |𝑥(𝑖)|𝑁

𝑖   

RootMean Square 
𝑡5 = √

1

𝑁
∑ 𝑥(𝑖)2𝑁

𝑖   
Mean Frequency 𝑓1 =

1

𝑁

𝑁

𝑗
𝑋(𝑗)  

AbsoluteMean Amplitude 𝑡6 =
1

𝑁
∑ |𝑥(𝑖)|𝑁

𝑖   Frequency Center 𝑓2 = ∑ (𝑓(𝑗)2𝑋(𝑗))𝑁
𝑗 /∑ 𝑋(𝑗)𝑁

𝑗   

ImpulsiveFactor 𝑡7 = 𝑀𝐴𝑋|𝑥(𝑖)|/
1

𝑁
∑ |𝑥(𝑖)|𝑁

𝑖   RMS Frequency 
𝑓3 = √∑ (𝑓(𝑗)2𝑋(𝑗))/ ∑ 𝑋(𝑗)𝑁

𝑗
𝑁
𝑗   

Standard Deviation 
𝑡8 = √

1

𝑁
∑ (𝑥(𝑖) − 𝑥)2𝑁

𝑖   Standard deviation frequency 
𝑓4 = √∑ ((𝑓(𝑗) − 𝑓𝑐)

2𝑋(𝑗))/ ∑ 𝑋(𝑗)𝑁
𝑗

𝑁
𝑗   

PeakFactor 
𝑡9 = 𝑀𝐴𝑋|𝑥(𝑖)|/√

1

𝑁
∑ 𝑥(𝑖)2𝑁

𝑖     

 

(1) Gear degradation typically occurs over an extended period, generating large volumes of data. By extracting 

time-frequency domain features, this data can be significantly reduced, thereby enhancing processing efficiency. 

This approach eliminates the need for continuously deepening network structures for feature extraction, which 

can complicate network optimization. 

(2) In real-time dynamic monitoring, time-frequency domain features of vibration signals can effectively charac-

terize the degradation state of gears. 

(3) The feature dataset constructed with time-frequency domain features displays distinct sequential patterns and 

trends, making it particularly suitable for input into a GRU network structure. 

(4) Relying on a single feature to assess gear degradation is limited and may result in the loss of critical infor-

mation. 

(5) The GRU algorithm focuses on learning and analyzing sequential trends and intrinsic connections within the 

data. It can independently determine which feature information to retain or discard, eliminating the need for spe-

cific extraction of sensitive features. In fact, incorporating a variety of features allows the model to learn more 
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comprehensively, resulting in performance that aligns more closely with real-world scenarios. 

 

Data normalization 

Data normalization, also referred to as standardization of data deviation, is a process that scales data to 

a uniform range. In this study, the min-max normalization method was applied to rescale the data to the range [0, 

1]. Normalization is commonly applied to evaluation indicators to mitigate the effects of differing units on the 

overall dataset, thereby facilitating the weighting and comparison of various indicators. The main considerations 

following data normalization are outlined below: 

𝑥∗ =
𝑥 − 𝑀𝑖𝑛

𝑀 𝑎𝑥 −𝑀𝑖𝑛
 

 

Where: 𝑀𝑖𝑛 is the maximum value among all sample data; 𝑀𝑎𝑥 is the minimum value among all sam-

ple data. Construct a new feature dataset after normalizing the data. 

 
Forecasting methodology process 

This paper proposes utilizing the processing capabilities of the GRU neural network for predicting gear 

lifespan based on time series data. The primary approach involves first extracting seventeen feature indices from 

the original vibration signals to create a seventeen-dimensional feature dataset, followed by normalizing the fea 

ture data. The SWM is employed to extract continuous subsequences from the original data by moving 

a fixed-size window. Each window contains a series of consecutive data points, and as the window slides, over-

lapping subsequences are generated. This method is widely used in time series prediction and signal processing 

[20]. In this study, we apply the SWM to process the dataset and construct training and test samples. Figure 4 

illustrates the schematic representation of the SWM. 

 

 

Fig. 4  Schematic diagram of the SWM 

 

The GRU model and the GWO algorithm are constructed, with the GWO population initialized such that 

each individual represents a unique hyperparameter combination. The loss function is used as the fitness value to 

evaluate each hyperparameter combination. Based on fitness values, the top three wolves with the highest fitness 

are selected to guide the search direction of the population. Iterative steps are repeated to narrow the search space, 

and the optimal hyperparameter combination is identified once fitness values converge. This optimal combination 

is then applied to train the GRU model. Figure 5 shows the pseudocode for GWO optimization of GRU hyperpa-

rameters. Finally, the training data is input into the model for training, and upon completion, the test set is used 

to assess the model's predictive performance. 
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Fig. 5  GWO-GRU model pseudocode 

 

IV. Experimental validation 

Introduction to data 

To assess the feasibility of the proposed algorithm, a publicly available gear life cycle dataset from 

Chongqing University was employed to test the method outlined in this study [21]. The experiments were con-

ducted using the gear contact fatigue test rig shown in Figure 6, which consists of four components: the gear 

operating platform, the torque control system, the cooling and lubrication system, and the experimental operating 

platform. The experimental gears were fabricated from 20CrMnMo material, with a normal modulus of 5 and 24 

and 26 teeth, respectively. The lubricant flow rate for the experiment was set at 4 L/h, with the cooling temperature 

kept at a maximum of 70°C. Under normal operating conditions, the gears exhibit a long lifespan; however, an 

acceleration experiment was performed to obtain degradation data. An acceleration sensor installed on the gearbox 

shell recorded the state detection signals of the test gears. The gear speed was set at 1000 r/min, and the torque 

was maintained at 1300 N·m. The sensor operated at a sampling frequency of 50 kHz, with sampling occurring 

from the 41st to the 50th second of each minute for 10 seconds. Each sample comprised 500,000 data points, and 

two sets of gear degradation data were used for the experiment, obtained under the same torque and speed condi-

tions. Most of the samples were collected during the gear break-in period and stable operation, with the last 600 

minutes of vibration data used as the degradation data for the gears, resulting in a total of 600 samples in the 

dataset. 
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Fig. 6  Accelerated test rig for gear degradation 

 

Each sample consists of 500,000 data points collected over a duration of 10 seconds, resulting in a total 

dataset of up to 300 million data points. The substantial size of this dataset imposes significant challenges for 

feature extraction; therefore, the data for each sample undergoes preprocessing in both the time and frequency 

domains. We calculated 13 features in the time domain and 4 features in the frequency domain for each sample, 

yielding a total of 17-dimensional features and constructing a feature dataset of 17 × 600 dimensions. Subse-

quently, the dataset is processed using SWM after normalization, and it is divided into a training set and a test set. 

The step size for SWM is set to 1, and the window size is set to 30. 

Next, the actual RUL of the gears is utilized as a label, with a value of 1 indicating an intact, theoretical 

state, while a value of 0 signifies that the gear has reached a failure state. This gear characterization dataset com-

prises a total of 600 data entries, with the cumulative life of the gears amounting to 600 minutes. It is important 

to note that this duration does not represent the true lifespan of the gears, as it excludes the time spent in stable 

operation and instead reflects the remaining life of the gears during the degradation phase. For instance, if we 

consider the current sample to be the 300th data point, the remaining life of the gear would be 300 minutes. 

Consequently, the corresponding label value for this sample would be calculated as 300/600 = 0.5. This process 

continues to construct the RUL labels for the gears. 

The model was designed using the open-source deep learning framework PyTorch. The hardware and 

software specifications included an Intel(R) Core(TM) i5-12500H CPU (3.1 GHz), WIN10 64-bit operating sys-

tem, NVIDIA RTX3050 GPU, Python 3.9, and PyTorch version 1.13. CUDA version 11.6 was installed to enable 

GPU acceleration. 

 

Indicators for model evaluation 

The performance of the constructed model is typically evaluated using three primary metrics: the Mean 

Absolute Error (MAE),the Root Mean Square Error (RMSE) and the coefficient of determination 𝑅2. The MAE 

measures the average absolute difference between predicted and actual values, while the RMSE quantifies the 

deviation between these values by calculating the square root of the sum of the squared differences [22]. 𝑅2, an 

essential metric, reflects the model's goodness of fit. A combined assessment using these three metrics enables a 

more precise and comprehensive evaluation of the model's performance. The calculations for these metrics are as 

follows: 

 

MAE =
1

𝑛
∑|𝑦̂𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦̅𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

 

Where  𝑦𝑖  represents the true value, 𝑦̂𝑖  denotes the predicted value, 𝑛 indicates the number of samples, 
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and 𝑦̅ denotes the mean value. The values of MAE and RMSE are inversely related to model accuracy; lower 

values signify higher prediction accuracy and stronger model performance. The closer the 𝑅2 value is to 1, the 

better the model fits the data and the higher its accuracy. 

 

Comparative analysis of prediction algorithms 

To evaluate the impact of various data split rsetatios on model performance, four distinct ratios were 

established: 50\% training set and 50\% test set; 70\% training set and 30\% test set; 80\% training set and 20\% 

test set; and 90\% training set and 10\% test set. The model's performance was assessed using three evaluation 

metrics: MAE, RMSE, and R², to analyze the effect of the split ratio on the model's performance. Table 2 presents 

the performance metrics computed based on the test dataset to evaluate the algorithm's performance at different 

data split ratios. 

Table 2: Performance of the Model with Different Data Splits 
Ratios Number of training samples / 

Number of test samples 

MAE RMSE R2 

5:5 300/300 0.3992 0.4241 -7.6026 

7:3 420/180 0.2913 0.2951 -10.5728 

8:2 480/120 0.0265 0.0328 0.6782 

9:1 530/70 0.0068 0.0087 0.8924 

 

As shown in the table 2, when the training set ratios are 50\% and 70\%, the R² values are negative, 

indicating that the model is overfitting. However, at the 80\% and 90\% training set ratios, the $R^2$ values are 

positive. The $R^2$ value for the 90\% training set ratio is closer to 1 compared to the 80\% ratio, with MAE and 

RMSE values approaching 0. Therefore, the first 530 samples were selected as the training set for model training, 

and the remaining 70 samples were used as the test set for model evaluation. 

The GRU model has four main hyperparameters: batch size, learning rate, number of hidden layer units, 

and number of hidden layers. This paper tests the proposed algorithm against GRU, LSTM, GA-GRU, and PSO-

GRU models. First, the GRU model is compared to the LSTM model. The hyperparameters for manual tuning of 

the GRU model are as follows: batch size of 32, learning rate of 0.001, 64 hidden layer units, and 2 hidden layers. 

For the LSTM model, the parameters for manual tuning include a feature dimension of 17, a learning rate of 0.001, 

a hidden state dimension of 64, and 2 layers. Both models were evaluated in the same environment, with the GRU 

model achieving a training time of 7.69 seconds, significantly less than the LSTM model's training time of 10.47 

seconds. Three optimization algorithms-GWO, GA, and PSO—were employed to optimize the four hyperparam-

eters of the GRU model. The initial values for the GWO, GA, and PSO algorithms were established to obtain the 

combinations of GRU hyperparameters that correspond to the minimum fitness function. The time taken by GWO, 

PSO, and GA to seek the optimal fitness value with the same number of iterations and initial parameters is 24 min 

18 sec, 28 min 17 sec, and 35 min 52 sec, respectively, which shows that the time taken by GWO is significantly 

less than that of GA and PSO. Table 3 presents the initial parameters for each optimization algorithm. 

 

Table 3: Initialparametersofeachoptimizationalgorithm 
GWO GA PSO 

Parameters Value Parameters Value Parameters Value 

Population Size 10 Population Size 10 Particle Swarm Size 10 

Max Iterations 30 Max Iterations 30 Max Iterations 30 

Dimension 4 Dimension 4 Dimension 4 

  Crossover Rate 0.8 Individual Learning Factor 2 
  Variation Rate 0.1 Social Learning Factor 2 

    Inertia Weight 0.5 

 

The hyperparameters of the GRU model, optimized using GWO, GA, and PSO, along with the manually 

tuned GRU parameters, are presented in Table 4. 

 

Table 4: Initialparametersofeachalgorithm 
 GWO-GRU GA-GRU PSO-GRU GRU 

Batch Size 30 30 30 30 

Learning Rate 0.0005 0.001 0.0017 0.001 

Number of Hidden Units 95 64 68 64 

Number of Hidden Layers 4 3 3 2 

 

Five models were employed to predict two sets of gear data. Figure 7 illustrates the remaining service 

life prediction curves for these five models. As depicted in the figure, the GWO-GRU model aligns more closely 

with the actual life curve than the other algorithms. Additionally, this model exhibits a smaller amplitude of pre-

dictive curve fluctuations and demonstrates higher prediction accuracy. 
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(a)Gear1     (b)Gear2 

 

Fig. 7 Comparison of the Predictive Effects of Different Models:( a) Gear1 and (b) Gear2 

 

After optimizing the models, there is some randomness in the prediction process due to the models. 

Therefore, all five models we trained and tested 100 times and calculated the average of MAE, RMSE and R² to 

enhance the robustness of the models. 

The results of the average values of the evaluation metrics for the different models over 100 training and 

testing sessions are shown in Figure 8, (a) MAE values of the different models on the two sets of data, (b) indicates 

the RMSE values of the different models on the two sets of data,and (c) shows the 𝑅2 values of the different 

models on the two sets of data. The figure shows that the MAE values of the GWO-GRU model for gear 1 and 

gear 2 are 0.004538 and 0.006732, respectively, with RMSE of 0.005965 and 0.009631. Compared to the other 

four models, the evaluation metrics of the GWO-GRU model converge more closely towards 0, and the GWO-

GRU has a greater enhancement of the prediction accuracy. Among them, the MAE values of GWO-GRU model 

on gear 1 were 34.47\%, 39.14\%, 30.50\% and 47.47\% lower than those of the manually tuned parameterized 

GRU model, LSTM model, and GA-GRU and PSO-GRU models, and the MAE values on gear 2 were 14.27\%, 

38.38\%, 25.44\% and 31.57\%; the RMSE values of the GWO-GRU model on gear 1 were 33.09\%, 36.96\%, 

30.74\% and 45.91\% lower than those of the manually-tuned GRU model, the LSTM model, and the GA-GRU 

and PSO-GRU models, respectively, and those on gear 2 were 16.12\%, 29.84\%, 1.86\%, and 21.83\% lower than 

those of the manually-tuned GRU model, the LSTM model, and the PSO-GRU model. The $R^2$ values of the 

GWO-GRU model on Gear 1 and Gear 2 are 0.9802 and 0.9431, respectively, and the $R^2$ values are closer to 

1 compared to other models, indicating that the model has a significant advantage in prediction accuracy. 

 
(a) MAE        (c) 𝑹𝟐 

 

 

 

 

 

 

 

 

 

          

           

(b) RMSE 

Fig. 7  Histograms of the Results of the Evaluation Metrics for the Different Models: (a) Mean 

Absolute Error, (b) Root-Mean-Square Error and (c) coefficient of determination. 
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In summary, the GWO-GRU model outperforms other models in prediction accuracy. This enhancement 

is likely attributed to the robust search capabilities of the GWO algorithm in hyperparameter optimization, which 

enables the GRU model to achieve more accurate parameter settings. 

Although the GWO-GRU model demonstrates strong performance across various scenarios, certain lim-

itations remain. For instance, while the GWO algorithm significantly outperforms both the GA and PSO algo-

rithms in convergence efficiency, it still requires approximately 24 minutes to process the 17 × 600 dataset. A 

comparison of the MAE, RMSE, and R² values for the model on Gear1 and Gear2 indicates better performance 

on Gear1 than Gear2, suggesting that the model's performance is more dependent on high-quality data. 

 

V. Conclusion 

In this paper, a method for predicting the RUL based on multi-feature input is proposed. The GRU is 

utilized to handle time series data, and the GWO is employed to optimize the hyperparameters of the GRU model. 

To verify the feasibility of the proposed method, a publicly available gear life cycle dataset was used. Firstly, the 

impact of different ratios of the training set to the test set on the prediction accuracy was compared and analyzed. 

It was found that a ratio of 90\% for the training set and 10\% for the test set could achieve the best prediction 

accuracy. Subsequently, the performance of the GWO-optimized GRU model was compared with the traditional 

GRU and LSTM models, as well as GRU models optimized using GA and PSO. The experimental results showed 

that the GWO-GRU model corresponded more closely to the actual gear life curve in comparison to the other 

models. Additionally, it demonstrated high prediction accuracy and minimal fluctuation. This method can effec-

tively tackle the issue of poor accuracy resulting from manual parameter adjustment and can prevent the occur-

rence of gradient explosion or disappearance during the prediction process. 

In the future, this method can be extended to other mechanical components to improve the utility of the 

method. In addition, integrating other optimization algorithms to form a hybrid optimization algorithm can en-

hance the global search capability of GWO, accelerate the convergence speed, and explore the time-frequency 

domain as a potential feature, which can provide a new perspective for understanding the degradation process of 

mechanical components. 
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