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ABSTRACT: In this paper, we focused on improving the damping of oscillations generated by the action of 

voltage regulators in the electrical system. To achieve this, we considered an SMIB system and designed the 

corresponding Heffron-Phillips model. We then integrated the PSS model into the obtained linearized model. 

Using this model, we established an objective function based on the damping factor and the damping ratio of 

the eigenvalues. This objective function was then minimized using the Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES) optimization method to obtain the PSS parameters. The analysis of the eigenvalues, 

damping ratios, and machine variable curves demonstrated the effectiveness of the PSS obtained through CMA-

ES compared to the conventional PSS. 
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I. INTRODUCTION 

Nowadays, the devices we use in daily life are almost all powered by electricity. As a result, the 

demand for electricity by households is steadily increasing. For electricity companies, meeting this growing 

demand requires an increase in production, as well as in transmission and distribution infrastructure. However, 

managing a large-scale power system is technically challenging, as companies have obligations to maintain the 

quality of the electricity supplied to users. On an international scale, standardization organizations such as the 

IEC (International Electrotechnical Commission) and ISO (International Organization for Standardization) are 

responsible for establishing quality standards based on key criteria such as frequency, voltage, harmonics, and 

service continuity. Typically, these organizations impose limit ranges for these parameters that electricity 

companies must not exceed. Since an electrical system is a dynamic multivariable system, where one variable 

influences others, ensuring compliance with these standards is not always straightforward. 

It is known that in an electrical system, the balance between the active and reactive power produced by 

the generators and consumed by the loads connected to the system ensures the stability of voltage and 

frequency. 

To meet voltage standards, a device called the Automatic Voltage Regulator (AVR) is inserted into the 

excitation systems of synchronous generators to adjust the reactive power produced or consumed in order to 

keep the output voltage close to a setpoint value. While these regulators play an important role in voltage 

control, they also have adverse effects on the system as a whole. The action of AVRs can induce oscillatory 

instability in the electrical system. This type of instability is characterized by oscillations typically within a 

frequency range of 0.1 to 0.8 Hz [1], and these oscillations can persist or even grow in amplitude. To mitigate or 

even eliminate this effect, additional stabilizing signals from devices called Power System Stabilizers (PSS) 

have been added to the excitation systems. 

Due to their cost-effectiveness and efficiency, Power System Stabilizers (PSS) are the most effective 

solution for mitigating the negative effects of Automatic Voltage Regulators (AVR). However, the performance 

of these devices is highly dependent on their parameter settings [2]. Numerous methods have been proposed in 

the literature to adjust the parameters of PSS [2]. These methods, based on the linearized model of the system, 

can be classified into two categories: 

The first category involves analyzing the system’s eigenvalues. In these cases, the PSS parameters are 

designed using the linearized model of the system around a nominal operating point [3].  

Numerous methods have been proposed in the literature for tuning the parameters of Power System Stabilizers 

(PSS) [2]. 

These methods, based on the system’s linearized model, can be classified into two main categories: 

 Phase compensation method, 
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 Residue method, 

 Pole placement method. 

 

The second category involves defining objective functions and optimizing those using metaheuristic 

methods to determine the PSS parameters. The most commonly used objective functions are based on: damping 

factors (real part of the eigenvalues) [1], the damping rate of the eigenvalues [4] [5], Integral of Square Error 

(ISE) [6], Integral of Time-weighted Absolute value of Error (ITAE) [3], and Integral of Absolute Error (IAE) 

[7]. Other studies combine some of these objective functions to create multi-objective functions. The 

optimization methods already explored for finding the optimal values for these functions include: 

 Genetic Algorithm [1], [2], [3], [8] 

 Particle Swarm Optimization [4], [5], [6] 

 Cuckoo Search [7] 

 

In this paper, the research objective is to find a more efficient PSS, specifically one that quickly 

dampens oscillations. To achieve this, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

optimization method is used to optimize objective functions based on the damping factor and the damping rate 

of the eigenvalues in order to determine the PSS parameters. The results obtained are then compared with the 

results from the same system with a PSS calculated using the phase compensation method, as well as with the 

system without a PSS. 

II. METHODOLOGY 

2.1- Modeling of the SMIB system 

 
Fig. 1 SMIB System 

To analyze the transient stability of an electrical network, it is crucial to simplify the network by 

representing it with an equivalent model. This model consists of a synchronous generator connected to an 

infinite bus through a transmission line with an impedance 𝑍. This impedance corresponds to the Thevenin 

equivalent impedance as observed at the terminals of the synchronous generator [9]. In this model, the voltage 

magnitude and the frequency of the infinite bus are assumed to be constant [4]. The single-machine infinite bus 

system is illustrated in Fig. 1. The dynamics of the generator and its excitation system are modeled using the 

differential equations presented below [10]: 

{
 
 
 
 

 
 
 
 
𝑑𝛿

𝑑𝑡
= 𝜔 − 𝜔𝑠

𝑑𝜔

𝑑𝑡
=
𝜔𝑠
2𝐻

(𝑃𝑚 − 𝑃𝑒 − 𝐷𝜔)

𝑑𝐸𝑞
′

𝑑𝑡
=

1

𝑇𝑞𝑜
′
((𝑥𝑑 − 𝑥𝑑

′ )𝐼𝑑 + 𝐸𝑞
′ − 𝐸𝑓𝑑)

𝑑𝐸𝑓𝑑

𝑑𝑡
=
1

𝑇𝐴
(−𝐸𝑓𝑑 + 𝐾𝐴(𝑉𝑟𝑒𝑓 − 𝑉𝑡))

 (1) 

The generator and excitation system dynamics are inherently nonlinear. However, the system can be simplified 

into a time-invariant linear form by linearizing it around a steady-state operating point. Following this 

linearization, the system dynamics can be expressed in state-space form as shown below [11]. 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴. 𝑥(𝑡) + 𝐵. 𝑢(𝑡) (2) 

Where 𝑥(𝑡) is the state vector and 𝑢(𝑡) is the input stabilizing signal [10]. 

~ ∞ 
      

𝑅𝑒 𝑋𝑒 
𝑉𝑡 𝑉𝐵 
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𝑥(𝑡) = [∆𝛿 ∆𝜔 ∆𝐸𝑞
′ ∆𝐸𝑓𝑑]𝑇 (3) 

 

𝑢(𝑡) = [∆𝑉𝑟𝑒𝑓] (4) 

 

The expression of matrix A is [10]: 

A =

[
 
 
 
 
 
 
 

0 𝜔 0 0

−
𝐾1
𝑀

−
𝐷

𝑀
−
𝐾2
𝑀

0

−
𝐾4
𝑇𝑑0
′ 0 −

1

𝐾3𝑇𝑑0
′

1

𝑇𝑑0
′

−
𝐾𝐴𝐾5
𝑇𝐴

0 −
𝐾𝐴𝐾6
𝑇𝐴

−
1

𝑇𝐴]
 
 
 
 
 
 
 

 (5) 

 

𝐵 = [0 0 0
𝐾𝐴
𝑇𝐴
]
𝑇

 (6) 

Equation (2) represents a fourth order system with as state variable: rotor speed (∆𝜔), load angle (∆𝛿), internal 

voltage (∆𝐸𝑞
′ ) and field voltage (∆𝐸𝑓𝑑). The block diagram of the linearized system, more often known as the 

Heffron-Phillips model of the SMIB system, is shown in Fig.4. Here the input to the system is the AVR 

reference voltage and the output is the rotor speed deviation. 

The constants (K1-K6) are called Heffron-Phillips constants, and are computed in [9]. 

2.2- Modeling of the PSS 

The Power System Stabilizer (PSS) is a control device used in power systems to enhance stability by 

damping low-frequency electromechanical oscillations that can arise due to disturbances like load changes or 

faults. It operates by monitoring signals such as rotor speed, frequency, or power output, processing them to 

generate a stabilizing signal that is fed into the generator's excitation system. This signal adjusts the excitation 

voltage to modulate the generator's output power and electromagnetic torque, counteracting the oscillations. By 

improving damping, the PSS helps maintain synchronism among generators, enhances dynamic stability, and 

reduces the risk of instability in the power grid. 

There are different types of PSS: Proportional-Integral (PI) PSS, Proportional-Integral-Derivative (PID) PSS 

and Lead-Lag controller based PSS.  

The PSS block structure comprises a dynamic gain to enhance damping, a Washout block functioning 

as a high-pass filter to minimize steady-state terminal voltage errors, and a lead-lag compensator blocks that 

provide additional phase shifting to reduce the mismatch between electrical torque and excitation[7] and finally 

the limiter blocks limit the amplitude of the control signals[4]. The PSSs take the change in generator angular 

frequency (∆𝜔) as the inputs and the PSS output signal𝛥𝑉𝑃𝑆𝑆, is then fed as a secondary input to the AVR loop, 

this structure is shown in Fig.2[4] 

 
Fig. 2 Structure of lead-lag PSS 

Where 𝐾𝑃𝑆𝑆 is PSS gain, 𝑇𝑤 is wash out time constant, 𝑇1 and 𝑇2are lead-lag time constants. 

The transfer function of the Power System Stabilizer (PSS) is given by [1]: 

𝑝𝑇𝜔
1 + 𝑝𝑇𝜔

 
1 + 𝑝𝑇1
1 + 𝑝𝑇2

 
𝑣𝑃𝑆𝑆 

∆𝜔 

𝑉𝑚𝑎𝑥 

𝑉𝑚𝑖𝑛 

𝐾𝑝𝑠𝑠 

Washout 

Filter 

Lead-Lag 

Compensator 
Gain 
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𝑣𝑃𝑆𝑆 = 𝐾𝑃𝑆𝑆
𝑝𝑇𝜔

1 + 𝑝𝑇𝜔

1 + 𝑝𝑇1
1 + 𝑝𝑇2

. ∆𝜔 (7) 

2.3-Combined SMIB model with PSS 

The washout filter stage is excluded as its primary purpose is to eliminate the steady-state error, which does not 

influence the design process. The transfer function of the PSS is combined with the linearized SMIB model in 

Equation (2) to derive the state-space representation: 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑝𝑠𝑠. 𝑥(𝑡) + 𝐵𝑝𝑠𝑠. 𝑢(𝑡) (8) 

Where the system A-matrix of this model is given by the equation (9) below [4] : 

𝐴𝑝𝑠𝑠 =

[
 
 
 
 
 
 
 
 
 

0 𝜔 0 0 0

−
𝐾1
𝑀

−
𝐷

𝑀
−
𝐾2
𝑀

0 0

−
𝐾4
𝑇𝑑0
′ 0 −

1

𝑇𝑑0
′ 𝐾3

1

𝑇𝑑0
′ 0

−
𝐾𝐴𝐾5
𝑇𝐴

0 −
𝐾𝐴𝐾6
𝑇𝐴

−
1

𝑇𝐴
0

−
𝐾𝑃𝑆𝑆 . 𝐾1. 𝑇1
𝑀. 𝑇2

𝐾𝑃𝑆𝑆
𝑇2

−
𝐾𝑃𝑆𝑆 . 𝐷. 𝑇1
𝑀. 𝑇2

−
𝐾𝑃𝑆𝑆 . 𝐾2. 𝑇1
𝑀. 𝑇2

0 −
1

𝑇2]
 
 
 
 
 
 
 
 
 

 (9) 

2.4- Formulation of the PSS optimization problem 

Considering the system described by equation (8), for an oscillatory mode associated with a pair of complex 

conjugate eigenvalues  = 𝜎 ± 𝑗𝜔, the following terms characterize the dynamic behavior of the system : 

𝜎 : the real part of the eigenvalue, referred to as the damping factor. 

𝜔 : the imaginary part, representing the frequency of the oscillatory component. 

𝜁 : the damping ratio 

𝜁 =
−𝜎

√𝜎2 + 𝜔2
 (10) 

- The damping ratio 𝜁 represents the system's ability to attenuate oscillations. A low 𝜁 indicates that oscillations 

persist for a longer time, whereas a high 𝜁 means the oscillations decay rapidly. 

- The real part of the eigenvalue 𝜎 indicates how quickly the amplitude of oscillations decreases over time, 

influencing the system's return to equilibrium after a disturbance. A small 𝜎 (close to zero) signifies weak 

damping, causing oscillations to persist longer, while a larger 𝜎 (more negative) represents stronger damping, 

leading to a faster decay of the oscillation amplitude. 

To improve the damping of the system, we adopt the following objective function[1] , [4] : 

𝑓1 = max(𝜎𝑖) (11) 

𝑓2 = max(−𝜁𝑖) (12) 

We obtain two objective functions𝑓1and 𝑓2. To simplify the study, these two objective functions are added to 

have a single objective function, we obtain: 

𝑓 = 𝛼. 𝑓1 + 𝛽. 𝑓2 (13) 

𝛼and𝛽 are sensitivity coefficients. 

The objective function is finally: 

Minimize 𝑓 (14) 

With the constraints [12]: 

𝐾𝑃𝑆𝑆
𝑚𝑖𝑛 < 𝐾𝑃𝑆𝑆 < 𝐾𝑃𝑆𝑆

𝑚𝑎𝑥

𝑇1
𝑚𝑖𝑛 < 𝑇1 < 𝑇1

𝑚𝑎𝑥

𝑇2
𝑚𝑖𝑛 < 𝑇2 < 𝑇2

𝑚𝑎𝑥

 (15) 

Since the washout filter should not have any effect on phase shift or gain at the oscillating frequency, it can be 

achieved by choosing a large value of 𝑇𝑤 so that 𝑠𝑇𝑤 is much larger than unity[4], [12]. 
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2.5-CMA-ES Optimization method 

Optimization is a key area in engineering and science, focused on identifying the best possible solutions within a 

given search space. Optimization problems are generally categorized based on the nature of the functions to be 

optimized and the constraints to be satisfied. Among these categories, we distinguish in particular [13]: 

 The complexity of the objective function, such as linearity, convexity, continuity, availability of the 

gradient, or the presence of multiple local minima. 

 The number of objective functions to satisfy simultaneously (multi-objective optimization). 

 The presence of constraints, where strict restrictions define the boundaries of the search space. 

Traditional deterministic methods are used to solve optimization problems; however, these methods are 

inefficient or inapplicable for certain complex problems [13]. 

Stochastic methods are then necessary to address these issues. These stochastic methods use random sampling 

or probabilistic processes to explore the solution space, helping to avoid, for example, local minima. 

In this context, evolutionary algorithms have gained popularity for solving difficult problems due to 

their approach based on principles inspired by natural evolution [14]. The most commonly used evolutionary 

algorithms are [14]: Genetic Algorithms, Particle Swarm Optimization, Simulated Annealing, etc. Among these 

algorithms, CMA-ES (Covariance Matrix Adaptation Evolution Strategy), introduced by Nikolaus Hansen and 

Andreas Ostermeier in the late 1990s, is recognized as one of the most robust and efficient methods [15]. 

2.5.1- Principle of CMA-ES optimization 

The CMA-ES (Covariance Matrix Adaptation Evolution Strategy) is a stochastic, population-based 

optimization algorithm designed for solving complex, non-linear, and non-convex optimization problems in 

continuous domains [15]. It works by iteratively sampling candidate solutions from a multivariate Gaussian 

distribution, which is adapted over time based on the fitness of previously sampled solutions [15]. The 

adaptation involves updating the covariance matrix of the distribution to learn the shape of the objective 

function and steer the search toward promising regions. The algorithm also adjusts a global step size to balance 

exploration and exploitation. CMA-ES is particularly effective for high-dimensional and difficult optimization 

problems where gradient information is unavailable. [15] 

2.5.2- Stage of the optimization process 

- Initialization: 

The algorithm starts with [16]: 

An initial mean 𝑚0, which is often an approximate estimate of the optimum. 

An initial covariance matrix 𝐶0 = 𝐼 (identity matrix), indicating that the search is isotropic. 

An initial standard deviation σ0, defining the size of the initial mutations. 

A population size λ, which determines the number of candidate points generated at each iteration. 

- Population Generation: 

At each iteration 𝑑, a population 𝑥𝑖
(𝑑)

 of λ candidate is generated by sampling the Gaussian distribution [15]: 

𝑥𝑖
(𝑑)

= 𝑚(𝑑) + 𝜎(𝑑). 𝑦𝑖
(𝑑)

 (16) 

Where:𝑦𝑖
(𝑑)

~ 𝒩(0, 𝐶(𝑑)) 

Each candidate point 𝑥𝑖
(𝑑)

 is a perturbation of the current mean 𝑚(𝑑), with deformations guided by 𝜎 and 𝐶. 

- Evaluation of candidate populations: 

The points 𝑥𝑖
(𝑑)

 are evaluated using the objective function 𝑓. The objective is to minimize𝑓(𝑥). The points are 

then ranked based on performance, so that [16]: 

𝑓(𝑥1
(𝑑)
) ≤ 𝑓(𝑥2

(𝑑)
) ≤ ⋯ ≤ 𝑓(𝑥

(𝑑)
)  

- Selection of child populations: 

Select the 𝜇 best individuals from the population based on the objective function values (individuals with the 

lowest objective function values are preferred) [16]. 

{𝑥1
(𝑑)
, … , 𝑥𝜇

(𝑑)
}/𝑓(𝑥1

(𝑑)
) ≤ 𝑓(𝑥2

(𝑑)
) ≤ ⋯ ≤ 𝑓(𝑥𝜇

(𝑑)
)  

http://www.ijeijournal.com/


 
Improvement of transient stability in an SMIB system through PSS optimization using CMA-ES. 

www.ijeijournal.com                                                                                                                                   Page | 76 

- Update mean: 

The new mean 𝑚(𝑑+1) is calculated as a weighted combination of the 𝜇 offspring populations [17]: 

𝑚(𝑑+1) =∑𝑤𝑖 .

𝜇

𝑖=1

𝑥𝑖
(𝑑)

 (17) 

Where:∑ 𝑤𝑖 = 1
𝜇
𝑖=1 and 𝑤𝑖 ≥ 0 

The weights 𝑤𝑖  favor the best individuals (typically 𝑤1 > 𝑤2 > ⋯ > 𝑤𝜇). 

- Update Evolution path 

Update the evolution path for the covariance matrix: the path 𝑝𝑐 keeps track of recent steps of the mean vector, 

adjusted by the step size. It shows the direction the center of the distribution is moving over time[15]. 

𝑝𝑐
(𝑑+1)

= (1 − 𝑐𝑐)𝑝𝑐
(𝑑)
+ ℎ𝜎 (√𝑐𝑐(2 − 𝑐𝑐)𝜇𝑒𝑓𝑓) (

𝑚(𝑑+1) −𝑚(𝑑)

𝜎(𝑑)
) (18) 

Update the evolution path for cumulative step size adaptation: The path vector 𝑝𝜎  dynamically adjusts the step 

size. If 𝑝𝜎  is too long, the step size is reduced; if too short, it is increased. This helps the algorithm adapt to the 

local search space conditions[15]. 

𝑝𝜎
(𝑑+1)

= (1 − 𝑐𝜎)𝑝𝜎
(𝑑)
+ (√𝑐𝜎(2 − 𝑐𝜎)𝜇𝑒𝑓𝑓) 𝐶

−
1

2 (
𝑚(𝑑+1) −𝑚(𝑑)

𝜎(𝑑)
) (19) 

- Update step size: 

The standard deviation 𝜎 controls the step size, balancing exploration and exploitation in the solution space. A 

larger σ means sampled points are farther from the current mean 𝑚, encouraging exploration. Conversely, a 

smaller 𝜎 results in smaller mutations, focusing on exploiting areas near the current mean [15]. 

𝜎(𝑑+1) = 𝜎(𝑑). exp (
𝑐𝜎
𝑑𝜎
(
‖𝑝𝜎

(𝑑+1)
‖

𝐸‖𝒩(0, 𝐼)‖
) − 1) (20) 

- Update Covariance Matrix 

To update the covariance matrix, we combine the previous matrix with two new parts: one part based on the 

evolution path (𝑝𝑐), and another part based on the best steps from the current population [15]. 

𝐶𝑘+1 = (1 − 𝑐1 − 𝑐𝜇)𝐶𝑘 + 𝑐1𝑝𝑐𝑝𝑐
𝑇 + 𝑐𝜇∑𝑤𝑖𝑦𝑖𝑦𝑖

𝑇

𝜇

𝑖=1

 (21) 
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Fig. 3 Flowchart of CMA-ES algorithm 

III. SIMULATIONS USING MATLAB SIMULINK, RESULTS AND DISCUSSIONS 

3.1- Simulations and results 

 
Fig. 4 Heffron-Philips model of the synchronous machine with PSS 

Start 

Initialization 

- Choose: ,μ,σ, 𝑚(𝑔=0) 

- Set: 𝑤1: ; 𝜇𝑒𝑓𝑓 ; 𝑐𝑐 ; 𝑐𝜎 ; 𝑑𝜎  

- Initialize: B ; D ; C 

Sampling and Evaluation 

- Generate  points which respect 

the constraints / 𝑥1: = 𝑁(𝑚, 𝜎
2𝐶) 

- Evaluate fitness 𝑓(𝑥𝑖) 

Selection 

-Sort𝑥𝑖: according fitness 

- Choose the 𝜇 best: 𝑥1:𝜇 

Stopping criteria 

reached? 

Recombination 

-Form new mean 𝑚(𝑔+1) 

from 𝑥1:𝜇 

Update 

-Paths: 𝑝𝑐 , 𝑝𝜎 

- Standard deviation: 𝜎(𝑔+1) 
- Adapt Covariance matrix: 

𝐶(𝑔+1) 

Next iteration 

g=g+1 

Return best solution 

and best fitness 

End 
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All the simulations in this paper were carried out using Matlab m-file and Simulink. 

The parameters K1 to K6 are presented in Table 1. 

Table 1 SMIB parameter values K1-K6 

Designation of parameters Value 

K1 1.3160 

K2 0.9277 

K3 0.3511 

K4 0.8895 

K5 −0.0702 

K6 0.4321 

The analysis proceeds with the following three scenarios: 

Scenario 1: The parameters in Table 1 are applied to the SMIB model from the matrix (5), and the resulting 

eigenvalues are presented in Table 2. 

Table 2 Eigenvalue results of a system without PSS 

Eigenvalues Damping Ratio 

0.5233 +12.8907i -0.0406 

0.5233 -12.8907i -0.0406 

-10.8431 +17.1655i 0.5341 

-10.8431 -17.1655i 0.5341 

Subsequently, a PSS is added to the SMIB system, and two different methods are used to determine the PSS 

parameters: 

Scenario 2: The PSS parameters are obtained using the phase compensation method.  

Scenario 3: The PSS parameters are determined through optimization using the CMA-ES algorithm.  

The global minimum is obtained at the 48th iterations, the evolution of the objective function over iterations is 

provided in Fig. 5.  

The PSS parameters of scenario 2 and 3 are show in Table 3 

Table 3 Results of PSS Parameters by computing and CMA-ES Method 

Method 𝑲𝑷𝑺𝑺 𝑻𝟏 𝑻𝟐 

Phase compensation 1.6430 0.3834 0.0500 

CMA-ES optimization 4.4072 0.2000 0.0500 

The eigenvalues of the system with PSS, whose parameters were obtained using the two methods, are presented 

in Tables 4 and 5, respectively. 
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Fig. 5 Fitness depending on the iteration 

Table4: Eigenvalue results with a PSS computed by phase compensation 

Eigenvalues Damping Ratio 

-5.6594 +18.3834i 0.2942 

-5.6594 -18.3834i 0.2942 

-2.3604 +12.0500i 0.1922 

-2.3604 -12.0500i 0.1922 

-24.5998 + 0.0000i 1.0000 

Table5: Eigenvalue results with a PSS optimized by CMA-ES 

Eigenvalues Damping Ratio 

-3.7666 +19.3508i 0.1911 

-3.7666 -19.3508i 0.1911 

-3.7666 +11.1301i 0.3206 

-3.7666 -11.1301i 0.3206 

-25.5732 + 0.0000i 1.0000 

The model illustrated in Fig.4 is used to simulate the three scenarios and analyze the behavior of the following 

variables: angular speed variation, rotor angle, field voltage,terminal voltage of the synchronous generator. The 

results for these three scenarios are shown in Fig.6 to 9. 

 
Fig. 6 Dynamic response of the rotor angle 
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Fig. 7 Dynamic response of the rotor speed deviation 

 
Fig. 8 Terminal voltage 

 
Fig. 9 Dynamic response of the field voltage 

3.2-Discussion 
- It can be observed from Fig. 6 to 9 that the system without a Power System Stabilizer (PSS) is unstable. 

- Fig. 6 and 7 demonstrate that the system equipped with an optimized PSS exhibits superior performance in 

stabilizing the rotor angle and speed deviation by minimizing oscillations in a shorter time compared to the 

results obtained with the conventional PSS. 

- According to Fig. 8, the system with the optimized PSS shows an overshoot in the terminal voltage of the 

synchronous generator compared to the system with the conventional PSS. However, the damping of 

oscillations is faster with the optimized PSS. 

- Fig. 9 reveals that the excitation voltage signal appears poorly damped with the optimized PSS. This behavior 

is logical because the optimized PSS injects stronger oscillatory corrections to stabilize the rotor oscillations. 

These significant oscillations are necessary to enhance the overall stability of the system. 

- The eigenvalue results for the system without a PSS shown in Table 2, indicate two eigenvalues with positive 

real parts, which explain the instability observed in Fig. 6 to 9. This is due to the fact that the system model was 

linearized around an unstable operating point. 
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- When comparing the dominant modes of the system with the conventional PSS (Table 4) to those of the 

system with the optimized PSS (Table 5), it is observed that the dominant mode of the system with the 

conventional PSS is closer to the imaginary axis than that of the system with the optimized PSS. This indicates 

that the oscillation in the system with the conventional PSS is less damped than in the system with the optimized 

PSS. 

- If we compare the damping ratios, it is observed that their minimum values are identical to within 10−2. 

However, considering the average of these ratios, the system with the optimized PSS exhibits a higher average 

damping ratio than the system with the conventional PSS. This explains why the damping performance of the 

optimized PSS is superior to that of the conventional PSS. 

IV. CONCLUSION 

In this paper, we analyzed a linearized Single Machine Infinite Bus (SMIB) model, known as the 

Heffron-Phillips model, with the integration of a Power System Stabilizer (PSS) to mitigate transient 

oscillations. Two approaches were employed to determine the PSS parameters: the conventional phase 

compensation method and the CMA-ES optimization method. The latter approach utilized a well-defined 

objective function and constraints to ensure effective optimization. The proposed approach was verified through 

various analyses, including eigenvalue analysis, damping ratio assessment, and time-domain simulation results. 

Results demonstrated that the PSS parameters derived via CMA-ES optimization significantly enhanced the 

damping of oscillations across all system variables, achieving rapid stabilization. These findings highlight the 

potential of CMA-ES as a reliable tool for improving power system stability. Future work could extend this 

approach to more complex power systems, such as multi-machine networks. 
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