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ABSTRACT: 

This research focuses on adapting Multilayer Perceptron (MLP) neural networks for the prediction of global solar 

irradiation in Madagascar, emphasizing the integration of temporal variables as explanatory factors. 

Madagascar, endowed with substantial solar potential but facing limited electrification, requires innovative 

approaches to harness this resource effectively. Accurate solar irradiation forecasting is essential to optimize 

photovoltaic system management and support the energy transition. In this study, four years of global solar 

irradiation data collected via Solcast were utilized. After rigorous preprocessing, including data normalization 

and reformulation of temporal variables using trigonometric bases (sine and cosine), an MLP model was trained 

and tested. The dataset was split into 70% for training and 30% for testing to evaluate the model's robustness 

across three strategic sites: Ambatolampy, Betainomby, and Ankatso. The results demonstrate a significant 

improvement in the MLP model's performance with the integration of temporal variables. Mean Absolute 

Percentage Error (MAPE) and Normalized Root Mean Square Error (nRMSE) were notably reduced, while the 

coefficient of determination (R²) reached high levels, exceeding 0.91 in several cases. These performances, 

particularly pronounced for medium-term prediction horizons (1 hour) and the short-term prediction horizon (5 

minutes), highlight the importance of tailoring models to local geographic and temporal specificities. This study 

offers promising perspectives for generalizing the methodology and developing operational tools for solar plant 

management and energy planning. 

Keywords: Solar irradiation forecasting, Multilayer Perceptron, temporal variables, meteorological and 

geographical factors. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 07-02-2025                                                                            Date of acceptance: 18-02-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 

The development of renewable energies, particularly solar energy, represents a strategic priority for 

Madagascar, a country characterized by significant solar potential and increasing electricity demand [1]. With a 

low electrification rate and high dependence on fossil fuels [2], effectively harnessing solar energy offers a viable 

solution to meet the nation's energy needs while promoting a transition toward a sustainable energy system. 

However, the variability of solar irradiation, influenced by meteorological and geographical factors, 

poses a major challenge for the optimal integration of this resource into the power grid [3]. Accurate solar 

irradiation forecasting is therefore essential to: 

 Improve the management and planning of photovoltaic systems; 

 Reduce uncertainties related to the balance between energy supply and demand; 

 Optimize the performance of solar power plants connected to the grid. 

This article is part of ongoing research on global solar irradiation prediction for Madagascar. The primary 

objective is to develop and evaluate a precise and robust prediction model for global solar irradiation tailored to 

Madagascar’s specific context. Using a Multilayer Perceptron (MLP), an advanced architecture of artificial neural 

networks, this study utilizes meteorological data enriched with parameters, including temporal resolutions down 

to 5 minutes.  

A distinctive feature of this research is the integration of innovative temporal parameters into the neural 

network inputs, such as seasonal, daily, and hourly indicators, which are rarely considered in previous studies. 

This approach aims to capture Madagascar's unique geographical and climatic specificities while maximizing 

prediction accuracy.

http://www.ijeijournal.com/
mailto:dee.meh.sth@gmail.com


Adaptive approach of multilayer perceptron neural network for a global irradiation prediction: … 

www.ijeijournal.com                                                                                                                                   Page | 83 

This work contributes to improving modeling methodologies in renewable energy by envisioning direct 

applications to optimize solar energy integration into Madagascar's electrical grids and supporting the country's 

energy transition. To achieve this, three strategic sites were selected: Ambatolampy (19∘29′24.78′′S, 

47∘26′38.07′′E): This site hosts a 40 MW solar power plant interconnected with the Antananarivo grid. It is a 

critical example of large-scale solar energy integration, enabling analysis of real-world performance and 

variability impacts on production. Betainomby (18°10'9.97"S, 49°23'13.15"E): Located in Toamasina, this 2 MW 

plant is connected to the coastal region’s grid in Eastern Madagascar. Despite its smaller size, it provides insights 

into solar energy integration in areas with variable sunlight and weather conditions. The site illustrates the 

challenges of interconnection in regions distant from the main grid. Ankatso Laboratory (18°54'56.69"S, 

47°33'34.08"E): This site with a capacity of 3kWp, at the solar laboratory of the Polytechnic School Research 

Center at the University of Antananarivo, is pivotal for high-quality data collection due to its advanced 

measurement equipment and its role in renewable energy academic research. 

These sites offer a comprehensive base to test theoretical hypotheses and predictive models in a 

controlled setting. They enable a thorough analysis of solar irradiation across varied contexts, from large 

interconnected infrastructures to smaller research-focused installations. 

 

II. METHODOLOGY 
Data used 

The data used and considered as measurement data in this study were obtained from Solcast [4], a 

specialized platform providing high-resolution satellite-based meteorological data available in real-time and for 

short-term intervals (ranging from hourly to 5-minute steps). 

The parameters used are: 𝐺𝐻  Global Horizontal irradiation [Wh/m2]: total solar energy received per unit 

area.  : Cloud opacity [%] is the cloud cover can attenuate solar irradiation. 𝑃 Atmospheric pressure [Pa], 

influences the propagation of solar radiation in the atmosphere. 𝑃𝑟  : Precipitation [mm] can reduce solar irradiation 

by creating clouds or humidity in the air. 𝑅ℎ : Relative humidity [%] is an important factor for determining the 

air’s capacity to absorb moisture and its impact on the diffusion of solar rays. 𝑤𝑆: Wind speed [m/s], is an indirect 

factor affecting evaporation, and therefore cloud cover and humidity. Zenith 𝜃𝑧 , is the parameters related to the 

position of the sun, influencing the angle of incidence of solar radiation. T: Temperature [°]. 

These data enable the construction of time series, which form the foundation for our prediction model. 

Given the lack of meteorological stations in our regions, the use of satellite data serves as an effective solution to 

address this gap, providing precise information on local climatic conditions. In our case, we had access to four 

years of data, spanning from January 1, 2020, to December 31, 2023.  

For the simulation, we used Matlab® software and its neural network toolbox. 

 

Data preprocessing 

To ensure accurate predictions and minimize the impact of low irradiation values, the data were filtered 

by removing observations recorded before 07:00:00 and after 17:00:00. This timeframe corresponds to periods of 

low irradiation where variations are not significant for modeling. Consequently, only 11 hours per day were 

retained, consistent with the reality of tropical solar cycles in Madagascar. This preprocessing step reduces noise 

in the data and optimizes model training, as recommended in several similar studies [5]. 

 

Data normalization 

Normalization was a crucial step to enhance the performance of the Multi-Layer Perceptron (MLP) 

model. This process prepared the global solar irradiation data to be compatible with the neural network by ensuring 

a uniform scale for all input variables, including measured global irradiation, exogenous meteorological variables, 

and temporal variables. 

Data normalization is performed for each dataset of global irradiation measurements. The formula 

applied to normalize the global irradiation 𝑦(𝑡)(𝑛𝑜𝑟𝑚), is as follows [6]: 

𝑦(𝑡)(𝑛𝑜𝑟𝑚) =
𝑦(𝑡) − 𝑦(𝑡)𝑚𝑖𝑛

𝑦(𝑡)𝑚𝑎𝑥 − 𝑦(𝑡)𝑚𝑖𝑛

 
(1) 

 

Where 𝑦(𝑡) represents the value of global irradiation at time t, 𝑦(𝑡)𝑚𝑎𝑥 et 𝑦(𝑡)𝑚𝑖𝑛 are respectively the 

minimum and maximum values observed in the global irradiation data series; 

This normalization eliminates biases caused by differing scales of input data, which is particularly 

beneficial for the MLP model, as it can be sensitive to magnitude differences among input variables. Additionally, 

it ensures greater stability during training, accelerates convergence, and enhances prediction quality. 
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Training and testing phases 

The data used for training and testing were sourced from four years of Solcast records. To evaluate the 

robustness and generalization ability of the model, the dataset was randomly split into two subsets: 70% of the 

data were used for training the model, while 30% were reserved for testing its performance. This partitioning 

ensures that the model does not overfit the training data and provides a more reliable assessment of its ability to 

predict solar irradiation for unobserved periods. 

 

Data denormalization 

After the model generates predictions on the normalized data, it is necessary to denormalize the results 

to restore them to their original scale. The formula for denormalizing the predicted global solar irradiation 

𝑦(𝑡)(𝑑𝑒𝑛𝑜𝑟𝑚) is as follows: 

𝑦(𝑡)(𝑑𝑒𝑛𝑜𝑟𝑚) = [𝑦(𝑡)(𝑛𝑜𝑟𝑚) ∗ (𝑦(𝑡)𝑚𝑎𝑥 − 𝑦(𝑡)𝑚𝑖𝑛)] + 𝑦(𝑡)𝑚𝑖𝑛  (2) 

 

Thus, 𝑦(𝑡)(𝑑𝑒𝑛𝑜𝑟𝑚) represents the predicted value of global solar irradiation on the original scale, 

enabling direct comparison with the measured data. 

 

Selection of the MLP model (Multi-Layer Perceptron) 

The MLP was chosen as the prediction model for several reasons: Non-linear flexibility: Unlike 

traditional linear models such as persistence or ARMA (Autoregressive Moving Average), the MLP can capture 

non-linear relationships between input variables and outputs [7]. Empirical validation: Numerous studies have 

demonstrated the effectiveness of MLPs for time series modeling in various fields, including solar irradiation 

prediction [8, 9]. Simplicity and popularity: Although many neural network architectures are available, the MLP 

remains widely used due to its ease of implementation and efficiency in prediction tasks [10]. 

A classical MLP network with one hidden layer and one output layer was employed. The mathematical 

relationship can be expressed as follows: 
 

𝑦̂(𝑡) = 𝑓 (∑ 𝑤𝑗
(2)

𝐻

𝑗=1

𝑔 (∑ 𝑤𝑖𝑗
(1)

𝐼

𝑖=1

𝑥𝑖(𝑡) + 𝑏𝑗
(1)

) + 𝑏(2)) (3) 

𝑥𝑖(𝑡) : The inputs at time t, including past values of irradiation and exogenous variables (meteorological 

and temporal), H: The number of neurons in the hidden layer, 𝑤𝑖𝑗
(1) and 𝑤𝑗

(2) : The biases associated with the 

hidden layer and the output layer, respectively, 𝑏𝑗
(1)

 et 𝑏(2 ) : the associated biases, 𝑔 and 𝑓 : activation functions 

in the hidden layer and the output layer, respectively. 

The input variables include: the endogenous variables, which are the past values of global solar 

irradiation, and the exogenous variables, which consist of meteorological parameters provided by Solcast and 

temporal parameters such as hour, day, and month, transformed into sinusoidal and cosinusoidal components to 

capture periodicity [11]. 

The temporal variables are defined as:  

𝑉𝑎𝑟_𝑠𝑖𝑛𝑡 = 𝑠𝑖𝑛 (2𝜋 
𝑡

𝜏
), 

(4) 

𝑉𝑎𝑟_𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠 (2𝜋 
𝑡

𝜏
), 

𝑡 : Time (hour, day, or month) 

𝜏 : Period, 𝜏=11 hours for a day, 𝜏= 365 days for a year and 𝜏=12 months in a year 

These temporal variables were incorporated to transform raw temporal information (hour, month, day of 

the year) into features that can be utilized by the Multilayer Perceptron (MLP) model. The idea is to represent this 

information in a way that preserves its cyclicity while enabling the model to extract insights effectively. 

 

Prediction Error Calculation 

In this study, several metrics were used to evaluate the performance of the MLP model in predicting 

global solar irradiation. These metrics include the nRMSE (Normalized Root Mean Square Error) with a 95% 

Confidence Interval (CI95), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and R² 

(Coefficient of Determination) [12]. 

𝑛𝑅𝑀𝑆𝐸 =
√1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

𝑦̅
× 100 (5) 
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𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (6) 

𝑀𝐴𝑃𝐸 =

1
𝑛

∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1

𝑦̅
× 100 (7) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

 
(8) 

𝐼𝐶95 = ±𝑍𝛼
2⁄ ∙

𝜎𝑦̂

√𝑛
 

(9) 

𝑦𝑖: measured value, 𝑦̂𝑖: predicted value, 𝑛: number of observation or data points and 𝑦̅: the mean of the 𝑦𝑖  

𝑍𝛼
2⁄ is the quantile of the standard normal distribution for a confidence level of 1−α (𝑍𝛼

2⁄ =1.96 for a 95% 

confidence level where α=0.05, significance level of 5%) and 𝜎𝑦̂ is the standard deviation of the prediction 

errors [12]. 

 

III. RESULTS AND DISCUSSION 
Table 1: Data splitting 

Data Period  

 Total dataset used 01-Jan-2020 07:00:00 à 31-Dec-2023 17:00:00 

 Training and validation 70% 01-Jan-2020 07:00:00 à 19-Oct-2022 14:00:00 

 Test 30% 19-Oct-2022 14:05:00 à 31-Dec-2023 17:00:00 

 

The four years of measurement data were divided into two distinct sets: 70% for training and validation, 

corresponding to the period from January 1, 2020, at 7:00 AM to October 19, 2022, at 2:00 PM, and 30% for 

testing, covering the period from October 19, 2022, at 2:05 PM to December 31, 2023, at 5:00 PM. This division 

ensures that the model is trained on a broad dataset while being tested over a sufficiently representative period to 

evaluate its robustness and generalization capacity. 

 

Table 2: Choice of the MLP network architecture, 

Ambatolampy site, horizon m+5 

Neuron in 

hidden layer 

nRMSE R2 MAE  MAPE 

1 4.68% 0.9933 12.8725 Wh/m2 2.57% 

2 4.61% 0.9935 12.8812 Wh/m2 2.57% 
3 4.51% 0.9938 12.6247 Wh/m2 2.52% 
4 4.50% 0.9938 12.6755 Wh/m2 2.53% 
5 4.49% 0.9939 12.5684 Wh/m2 2.51% 
6 4.46% 0.9939 12.5363 Wh/m2 2.51% 
7 4.38% 0.9942 12.5079 Wh/m2 2.50% 
8 4.35% 0.9942 12.5585 Wh/m2 2.51% 
9 4.36% 0.9942 12.5113 Wh/m2 2.50% 

10 4.34% 0.9943 12.3785 Wh/m2 2.47% 
11 4.35% 0.9942 12.5046 Wh/m2 2.50% 
12 4.46% 0.9939 12.5541 Wh/m2 2.51% 
13 4.35% 0.9942 12.4214 Wh/m2 2.49% 
14 4.35% 0.9942 12.5520 Wh/m2 2.51% 
15 4.35% 0.9942 12.4731 Wh/m2 2.49% 
16 4.35% 0.9942 12.5398 Wh/m2 2.51% 
17 4.35% 0.9942 12.5221 Wh/m2 2.50% 
18 4.35% 0.9942 12.5279 Wh/m2 2.50% 
20 4.35% 0.9942 12.5215 Wh/m2 2.50% 

  

According to Table 2, a number of 10 neurons in the hidden layer was selected in this study, as this 

configuration yields the best error values across the different tests.
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Table 3: Prediction horizon: h+1 (one hour) 

Sites Ambatolampy Betainomby Laboratory 

Errors 
MAPE 

nRMSE 

±CI95 
R2 MAPE 

nRMSE 

±CI95 
R2 MAPE 

nRMSE 

±CI95 
R2 

MLP without 
temporal 

variables 

19.03% 
25.25% 

±3.34 
0.8437 21.56% 

27.25% 

±3.60 
0.7956 17.63% 

23.53% 

±3.31 
0.8483 

MLP with 
temporal 

variables 
13.46% 

18.58% 

±2.44 
0.9166 12.15% 

16.85% 

±2.20 
0.9228 13.26% 

18.33% 

±2.56 
0.9098 

Table 4: Prediction horizon: m+5 (5 minutes) 

Sites Ambatolampy Betainomby Laboratory 

Errors 
MAPE 

nRMSE 

±CI95 
R2 MAPE 

nRMSE 

±CI95 
R2 MAPE 

nRMSE 

±CI95 
R2 

MLP without 

temporal 
variables 

2.79% 
4.74% 

±0.20 
0.9931 2.75% 

4.54% 

±0.19 
0.9928 2.95% 

5.28% 

±0.24 
0.9902 

MLP with 

temporal 

variables 

2.49% 
4.34% 

±0.18 
0.9943 2.13% 

3.98% 

±0.17 
0.9946 2.75% 

4.95% 

±0.22 
0.9914 

 

These results compare the performance of an MLP (Multilayer Perceptron) model with and without the 

integration of temporal variables for prediction horizons of h+1 (medium-term horizon, 1 hour) and m+5 (short-

term horizon, 5 minutes). The analysis shows that integrating temporal variables significantly enhances the MLP 

model's performance in predicting solar irradiation in Madagascar, with particularly notable improvements for the 

medium-term prediction horizon (h+1, 1 hour). 

For example, for Table 3, at Betainomby, the MAPE decreases substantially from 21.56% to 12.15%, and 

the nRMSE decreases from 27.25% to 16.85%, while the coefficient of determination (R2) increases from 0.7956 

to 0.9228. Similar improvements are observed at Ambatolampy, where R2 increases from 0.8437 to 0.9166, and 

at the Ankatso Laboratory, where the MAPE decreases from 17.63% to 13.26%. These results highlight the 

model's improved ability to capture hourly variations in solar irradiation due to the inclusion of temporal variables. 

For the short-term prediction horizon (m+5, 5 minutes), Table 4, the model's overall performance is 

already high, with R2 values close to 1 across all sites. At Betainomby, integrating temporal variables further 

reduces the MAPE from 2.75% to 2.13% and the nRMSE from 4.54% to 3.98%, confirming an almost perfect 

correlation between predictions and measurements. These results demonstrate the model's capability to effectively 

handle short-term predictions, where data variability is less pronounced. 

 

 
Fig.1 Prediction for the Laboratory site on January 26, 2023, from 07:00:00 to 17:00:00 (Period m+5) 
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Fig.2 Linear regression curve between measured global irradiation and predicted global irradiation for  

Laboratory Site,  y=0.99x+5.64, R2=0.99 

 
Fig.3 Prediction for Betainomby site for the Period from July 2, 2023, 07:00:00 to 17:00:00  

(Period m+5) 

 
Fig.4 Prediction for Ambatolampy site for the Period from November 30, 2023, 07:00:00 to 17:00:00 

(Period m+5) 
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Fig.5 Prediction for Ambatolampy site for the period from July 7, 2023, 07:00:00 to July 12, 2023, 17:00:00  

(Period h+1) 

 
Fig.6 Prediction for Laboratoire site for the period from July 7, 2023, 07:00:00 to July 12, 2023, 17:00:00  

(Period h+1) 

           
Fig.7 Prediction for Betainomby site for the period from July 7, 2023, 07:00:00 to July 12, 2023, 17:00:00  

(Period h+1) 
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IV. CONCLUSION 

The results obtained demonstrate that integrating temporal variables into the MLP model significantly 

enhances the accuracy of solar irradiation predictions for the three sites. This approach enables better capture of 

the country's specific temporal and geographical variations, making the models more robust and better suited to 

local conditions. The observed performance improvements, particularly in Betainomby for the medium-term 

horizon, confirm the importance of incorporating site-specific data for optimal modeling. 

To further this research, several directions can be explored: 

 Geographical Generalization: Extend the analysis to other regions of Madagascar or areas with similar 

climatic characteristics to evaluate the generalizability of the results; 

 Practical Applications: Develop decision-support tools for solar plant management and energy planning, 

leveraging the improved predictions of the model. 
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