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ABSTRACT: This paper presents an improved multi-factor ant colony algorithm for solving the path planning 

problem of Automated Guided Vehicles (AGVs) in industrial manufacturing systems. Firstly, the importance of 

AGV path planning and the limitations of traditional ant colony algorithms are introduced. Subsequently, the 

improved ant colony algorithm is elaborated in detail, including the improved grid map storage model, multi-

factor comprehensive state transition probability, and pheromone updating model. Comparative experiments on 

a 20x20 regular obstacle map show that the improved algorithm outperforms the traditional ant colony 

algorithm in terms of path length, height variance, number of turns, and comprehensive indicators. Further 

experiments with added obstacles validate the superiority of the improved algorithm. In conclusion, the 

improved multi-factor ant colony algorithm demonstrates high practical value and potential for application. 
NOMENCLATURE  

Symbol Description Unit 

ACO ant colony optimization 
 

AGV Automated Guided Vehicles  vehicle 

FGDACO 
Dynamic ant colony optimization for 

fuzzy gain 
 

GDGACO 
Gain-based dynamic green ant colony 
optimization 

 

EPIACO 
Emergency path planning improves ant 

colony optimization algorithm 
 

d Route length  m 

i Raster symbols  

v The height difference between the grids  

r Number of turns   

u two-dimensional smoothness inspiration 
 

MAX maximum distances  

MIN minimum distances  

C constant  

 

Greek letter 
τ Pheromone concentration  

φ The correction distance to the grid  

ω correction parameter  

μ correction parameter  

Subscripts 
ij Raster coordinates 

rcx8 Matrix of 8 grids 
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I. INTRODUCTION  

As industrialization speeds up, automation technologies are increasingly used in manufacturing. AGVs, 

key to modern logistics and production systems, have their path - planning as a core research focus for 

enhancing system efficiency and safety. This planning not only affects AGVs' operational efficiency but also the 

overall system's logistics, costs, and product quality. In complex industrial settings, AGVs need to navigate 

efficiently and safely, avoiding collisions and path blockages while optimizing length, time, and energy 

consumption [1-3]. 

Traditional path-planning algorithms mainly focus on the shortest path, yet in practice, AGV path - 

planning must consider various factors like smoothness, safety, energy consumption, and collision avoidance 

during multi - AGV collaboration. These factors often conflict, making balancing them a key challenge in path - 

planning. In recent years, ant colony optimization (ACO), a heuristic algorithm, has gained wide attention due to 

its effectiveness and robustness in solving complex path - planning problems. But the traditional ACO still has 

limitations like slow convergence and a tendency to fall into local optima when handling multi-factor path-
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planning [2-5]. 

To overcome these limitations, researchers have proposed various improved ACO algorithms. These 

enhanced algorithms introduce new pheromone update mechanisms, heuristic functions, and path-smoothing 

strategies to boost search efficiency and path quality. This paper presents an improved multi-factor ACO, 

aiming to consider various factors such as path length, smoothness, and safety to enhance the efficiency and 

quality of AGV path-planning. With an improved grid map storage model, multi - factor composite state 

transition probability, and optimized pheromone update model, the algorithm shows greater practical value and 

potential for promotion in real - world applications. 

Mohamed A. Damos et al. proposed an efficient method for optimizing tourist paths in hilly areas 

based on an improved ACO (Ant Colony Optimization) algorithm. By improving the pheromone update 

technique and implementing new initialization parameters, the limitations of the traditional ACO and Genetic 

Algorithm (GA) were addressed. This method provided a comprehensive and efficient way for planning hiking 

trails in hilly areas, considering dynamic tourist objectives such as temperature, atmospheric pressure, and 

health conditions, thereby promoting the development of tourism [6].Sangeetha Viswanathan et al. proposed a 

Fuzzy Gain-based Dynamic Ant Colony Optimization (FGDACO) for dynamic path planning, which effectively 

planned collision-free, smooth paths with feasible path lengths and minimal time. During path planning, the 

pheromone update mechanism of the ant colony system was enhanced using a Sigmoid gain function, enabling 

effective utilization of pheromones, and the results were verified [7].V. Sangeetha et al. proposed an efficient 

Gain-based Dynamic Green Ant Colony Optimization (GDGACO) metaheuristic, which enhanced the 

pheromone mechanism of the ACO and reduced the total energy consumed during path planning [8].Shitong 

Bao et al., aiming at the problem of slow convergence speed of the ant colony algorithm in 3D path planning for 

UAVs, proposed a heuristic function and local search strategy of an improved ant colony algorithm with an 

angle factor. Compared with traditional algorithms, the overall path planning was shortened by 22 km, and the 

convergence speed was 51.3% of the original algorithm, enhancing the ability of the ant colony algorithm to 

find optimal solutions in 3D environments. This also effectively improved the convergence speed and search 

efficiency of the algorithm, demonstrating its feasibility and effectiveness in 3D trajectory planning for UAVs 

[9]. Huakai Sun et al. proposed a new Emergency Path Planning Improved Ant Colony Optimization Algorithm 

(EPIACO). EPIACO includes six improvement mechanisms: initial pheromone distribution, a heuristic function 

with direction judgment, an adaptive pheromone fluctuation factor, a differentiated pheromone update rule, an 

improved state transition probability strategy, and path smoothing. It was demonstrated using a fire evacuation 

case, proving the algorithm's practicality and flexibility [10]. Dai Yuan Zhang et al. proposed a Generalized Ant 

Colony Algorithm, which extended the definition of the ACO and conducted a more general study on it. The 

functional update strategy replaced the parametric algorithm update strategy, accelerating the convergence speed 

of the ACO. Applying the Generalized Ant Colony Algorithm to robot path planning can improve the robot's 

search speed and reduce the convergence time cost [11]. Li Jian et al., in the current prevalence of electric 

vehicles, proposed an improved ant colony optimization algorithm for dynamic energy-saving path planning of 

electric vehicles. This algorithm integrated a traffic flow prediction model and an electric vehicle-specific 

energy consumption model, enhancing the efficiency and accuracy of path planning through redesigned 

heuristic factors and state transition rules [12]. Li Chen yang et al. proposed an ant colony algorithm based on a 

Gaussian distribution pheromone evaporation mechanism. This algorithm reduced the collision probability with 

obstacles during the search navigation process, improving the search efficiency and obstacle - avoidance ability 

of mobile robots in complex environments. By establishing a grid environment model and introducing a 

Gaussian distribution pheromone fluctuation mechanism for optimal path planning, it solved the problem that 

the algorithm could not effectively converge to the optimal solution when encountering special obstacle 

distributions, achieving more efficient obstacle avoidance [13]. 

Based on previous research, this paper improves the ant colony algorithm and applies it to path 

planning. By optimizing pheromone distribution, reducing turns during operation, and enhancing iteration 

stability, the ant colony algorithm is made more practical. 

 

II. IMPROVE THE PROCESS 

During the process of finding the optimal path, ants rely on the collective behavior of the ant colony to 

discover the best route. As ants search for the optimal path, they leave pheromones on the paths they traverse, 

and subsequent ants choose paths based on the strength of these pheromones. When reaching an intersection that 

has not been explored before, ants will randomly select and release pheromones, with the amounts of 

pheromones being inversely proportional to the length of the path. Over time, pheromones on shorter paths will 

continuously increase, while those on longer paths will gradually decrease or disappear. Eventually, the ant 

colony will find a suitable optimal path [14]. Fig. 1 illustrates search principle of an ant colony. 
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（a）Pheromone Setting（b）The number of ants at T = 0（c）The ant population at T = 1 

Fig.1 Ant Colony Search Principle 

 

shown in Fig This is shown in Figure 1, Set the ant nest as point A, the food source as point E, and the 

obstacle as BCDH. As shown in Figure a, when there are obstacles between the ant nest and the food source, the 

ants can only reach E from A via C or H, or reach A from E via C or H. The length of B-C-D is d=1, and the 

length of B-H-D is d=2. As shown in Figure b, the initial state has 30 ants each at the ant nest A and the food 

source E. For convenience, the time of pheromone residue is set as T=0. Initially, there are no pheromones on 

the paths BC, CD, BH, and HD. The ants at A and E can randomly choose paths at intersections. Statistically, 

the probabilities of ants choosing BC, CD, BH, and HD are the same, so there are 30 ants on each of the two 

paths. [15]. As shown in Figure c, after a unit time T = 1, the pheromone left by ants in this time is denoted as τ. 

Since path B-C-D is shorter, it has more residual pheromones (τ = 30), while path B-H-D, being longer, has 

fewer pheromones (τ = 15). Twenty ants reach E from B, C, and D. Over time, ants increasingly choose the 

shorter path B-C-D, ultimately finding the shortest route between the nest (A) and the food source (E). This 

illustrates the core principle of the ant colony algorithm. [16]. 

Traditional path - planning algorithms usually only consider the shortest path, but they can't be applied 

to most real situations. This is because mobile robots need to adapt their paths to the environment in terms of 

distance, smoothness, and safety. If only the shortest path is pursued, the robot may have to turn multiple times, 

go uphill and downhill often, or pass through dangerous areas. This not only increases the target cost but may 

also harm the robot's performance and shorten its life. Moreover, these path evaluation factors are often 

mutually exclusive, and it is impossible to achieve both. Finding a balance among these factors is a multi - 

objective planning problem. The multi - heuristic - factor ant colony algorithm uses three heuristic factors: path 

length, number of turns, and elevation difference. It enables ants to find the optimal path based on various local 

information, considering multiple factors. It also proposes a multi - factor pheromone update model, allocating 

pheromones according to the path's comprehensive evaluation index. This, combined with an improved grid 

map storage model and non - uniform initial pheromones, speeds up the algorithm's computation and 

convergence [17]. 

First, the creation of an improved grid-based map storage model is proposed. There are two types of 

grid map transition models: four-direction and eight - direction. The eight - direction model, which allows for 

more flexible and smooth route planning, is adopted in this paper. For easier storage, a one-dimensional grid 

labeling method is used. The transition matrix is defined as Drc×8 = (dij)rc×8, where the value of element dij 

represents the distance from the i-th grid to its adjacent grid in the j-th direction, with i = 1, 2, 3, ..., rc , j = 1, 2, 

3, ..., 8. The definition of the direction code j is shown in Figure 2. 
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Fig.2 The adjacency grid steering designator 

 

Among them, even - numbered codes represent straight moves, and odd - numbered codes diagonal 

moves. When making diagonal transfers in most eight-direction transfer models, there is often a risk of collision 

with adjacent obstacle grids, as shown in Figure 3. The common solution is to further expand the original 

obstacles to leave enough space to avoid collisions. However, this method requires proper control of the degree 

of expansion. Excessive expansion may block the originally passable path. This paper proposes an improved 

turning mechanism to avoid the risk of collision from the perspective of logical rules. As shown in Figure 4, 

when the ant moves diagonally, it can only transfer to the diagonal grid when both two straight grids on the two 

sides of the line connecting the current grid and the grid to be turned to are free grids. Based on this turning 

mechanism, the transfer matrix dij can be constructed, as shown in the following formula (1). 

1

ij 2

                 ( ) 0 & mod( ,2) 0 & (i ) 0

d 2      ( ) 0 & mod( ,2) 1& ( ) 0 & ( ') ( '') 0

                                              

l G i j G

l G i j G i G i G i

else

  


     

      (1) 

 
Fig.3 Impermissible ways of walking 

 

Among them, i1 represents the number of the straight-direction grid, and i2 represents the number of 

the diagonal-direction grid. i’ and i’’ respectively represent the two straight-direction grid numbers that are 

vertical to the diagonal line. represents intransferable (including the case of going out of bounds), and mod (j, 2) 

is used to judge the parity of j, to determine whether the next step is straight or diagonal. 

Second, this paper proposes a comprehensive state transition probability algorithm based on multiple 

factors. In the early stage of the algorithm, due to the small difference in initial pheromone and the high 

randomness of transition, the movement of the ant colony is very chaotic, which affects the convergence of the 

algorithm. At this point, the heuristic function plays a key role. To better guide the ants, the following changes 

are made: 
m

i j , , ,( ) ( ) ( )m

i j i j i jt q r q v   ，     (2) 

Among them, φ i，j(q) represents the corrected distance from the center of a certain adjacent grid of grid 

i to the center of the target grid. rij(q) represents the turning condition when the m-th ant in the t-th iteration 

transfers from grid i to grid j. vij represents the height difference when transferring from grid i to grid j. 

The distance factor refers to the Euclidean distance from the grid after the transfer to the target grid. 

The shorter the distance, the higher the transfer probability. Since the distances from the centers of adjacent 

grids to the target grid center are initially large and offer little differentiation, a corrected distance function φi, 

j(q) is introduced. It normalizes these distances to highlight differences, and is defined as follows: 
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Among them, ω and μ are correction parameters. They can take different values depending on the 

problem environment. MAXd and MINd are the maximum and minimum distances from adjacent grids to the 

target grid. The aim is to normalize these distances. a is the ordinal number of elements in a set, and card is the 

number of elements in the set. 

 Considering the smoothness of the path in a two-dimensional plane, it is expected that the number of 

turns in the path is as small as possible, and the following two-dimensional smoothness heuristic function is 

introduced. 
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m

i t p i(j allowed g=visited (end 1)) ，，  

In the formula, u is a constant for two-dimensional smoothness inspiration, and η is a coefficient 

(percentage constant) for the importance of straight travel. Values are assigned to them as needed. "Visited" is 

the ordered set of grid numbers visited by the m th ant up to the i th grid in the t th iteration. "g" is the number of 

the previous grid of the grid with label i that the ant has passed through. "i-j = g-i" means that the turning 

direction from grid g to grid i is the same as that from grid i to grid j. If the current direction is the same as the 

previous one, there's no turn in this move, and the heuristic function for moving in that direction is larger; 

otherwise, it's smaller. This guides the ant to move straight where possible and avoid zigzag paths around 

obstacles. 

Later, the initial pheromone was improved. Traditionally, the initial pheromone is a fixed value, i.e., 

uniformly distributed. This can cause ants to move in a disordered way and easily get stuck, which is not good 

for guiding later ants in pathfinding. To make the initial pheromone more instructive for ants, the following 

improved formula5,6 is proposed. 

, (0) ( )i j C f j     (5) 

( ) 1/ ( ( ))u jf j card C allowed   (6) 

In the formula, C is a constant. f(j) is the obstacle - avoidance safety function. It calculates the 

reciprocal of the number of adjacent obstacle grids of the grid to be transferred. Cu is the complement symbol. 

U is the set of all adjacent grids of grid j. allowedj is the set of feasible adjacent grids of grid j. The closer the 

grid to be transferred is to an obstacle, the lower the initial pheromone on that route, and vice versa. This helps 

ants avoid obstacles quickly, prevents them from getting stuck, and speeds up the algorithm's convergence. 

 

III. RESULTS AND DISCUSSION  

The improved and traditional ant colony algorithms were compared on a 20x20 regular obstacle map. 

Fig. 5 shows the traditional algorithm's results, and Fig. 6 displays the improved version's outcomes.  
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Fig.5 Simulation results of traditional ant colony algorithm 

 

 
Fig.6 Diagram of the simulation results of the improved ant colony algorithm 

 

Table(1). Comparison of algorithm data1 
Metrics for optimal paths Traditional ant colony algorithms Improved algorithm 
length 32 34 
Height Mean Square Deviation (x100) 7.312 7.124 

Number of turns 13 10 

Composite indicators 62.24 56.12 

The number of iterations stabilized 18 7 

Program running time 2.287s 2.671s 

Iterative stabilization estimation time 0.996s 1.212s 
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Fig.7 The length of optimal route for each generation 

 

 
Fig.8 The best route composite index and average composite index 

 

 
Fig.9 The height mean square deviation of the optimal route is 100 
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Fig.10 The number of turns of the best route each generation 

 

As shown in Fig. 7, 8, 9, and 10, the blue line represents the traditional ant colony algorithm, while the 

red line indicates the improved version. The experimental results reveal that the three algorithms have similar 

optimal path lengths, with the traditional one being slightly shorter. However, in terms of 3D path smoothness, 

the traditional algorithm is quite unstable in the early iterations. In contrast, the improved algorithm, 

incorporating elevation difference heuristic factors and height variance evaluation indices, shows a downward 

trend in its iteration curve and achieves a significantly lower height variance of the optimal path. When it comes 

to 2D turning situations, the improved algorithm has far fewer turns and a more stable convergence curve than 

the traditional one. Overall, the improved algorithm outperforms the traditional one in comprehensive indices 

and iteration stability, with only a slightly longer iteration time. Therefore, when pursuing comprehensive path 

performance, this chapter's algorithm demonstrates a clear advantage. 

To further verify the experimental reliability, an additional 20% of obstacles were added, and the 

experiments were repeated, yielding the following results: 

 
Fig.11 Simulation results of traditional ant colony algorithm 
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Fig.12 Diagram of the simulation results of the improved ant colony algorithm 

 

 
Fig.12 The length of the optimal route for each generation 

 

 
Fig.13 The height mean square deviation of the optimal route is 100 
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Fig.14 The number of turns of the best route for each generation 

 

 
Fig.15 The best composite index and average composite index 

 

Table(2). Comparison of algorithm data2 
Metrics for optimal paths Traditional ant colony algorithms Improved algorithm 
length 33 36 
Height Mean Square Deviation (x100) 8.12 8.01 

Number of turns 15 7 

Composite indicators 62.24 56.02 

The number of iterations stabilized 7 12 

Program running time 3.271s 3.618s 

Iterative stabilization estimation time 1.512s 1.733s 

 

Simulation results show that while this chapter's algorithm is slightly worse than the traditional ant 

colony algorithm in path length and runtime, it is significantly better in 3D smoothness. From route maps, this 

algorithm bypasses many high-peak areas. It has a slightly higher number of stable iterations than the traditional 

one, but its more concise program and faster execution speed result in a shorter actual time to stability. Though 

this algorithm takes longer in computation time than the traditional ant colony algorithm, its superior 

performance makes the trade-off acceptable and it is more practical in real-world applications. 

 

IV. CONCLUSION  

This paper proposes an improved multi-factor ant colony algorithm to solve the path-planning problem of AGVs 

in industrial manufacturing systems. Comparative experiments on a 20x20 regular obstacle map yield the 

following results. 

1. The improved algorithm has fewer turns than the traditional one. 
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2. The improved algorithm's composite indicators are better than the traditional algorithm. 

3. The iterative stability of the improved algorithm outperforms the traditional one. 

Overall, the improved multi-factor ant colony algorithm has high practical value and potential for solving the 

AGV path-planning problem. 
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