Optimization of Flow Parameters in Gas Pipeline Network System (Panhandle-A as Base Equation)

Dr. Mathew, Shadrack Uzoma, Prof (Mrs) O. M. O. ETEBU

Department of Mechanical Engineering University of Port Harcourt Port Harcourt, Rivers State, Nigeria Department of Mechanical Engineering University of Port Harcourt Port Harcourt, Rivers State, Nigeria Corresponding Author: Dr. Mathew

ABSTRACT: Gas pipeline assets and facilities are capital intensive production assets. Optimization of flow parameters in gas pipelines network system applying the models developed by the researcher is the focus of this work. The developed optimization models background is fundamental Panhandle A equation.

The optimization results for single phase flow of gas in the five gas pipelines system used as case study confirmed that about 10% additional throughput over the normal operational levels could be accommodated by existing gas pipelines in Nigerian terrain. There could also be a drastic 20% to 45% reduction in line pressure drop.

It was discovered in this work that optimization of flow parameters led to drastic reduction in pressure drop along the line and increased flow throughput. It has been established that increased line pressure drop would ultimately lead increased pump and compressor power. As such, higher cost of design, construction and operation of gas pipeline should be the order of the day.

The developed optimization models for flow variables could enable gas pipeline assets and facilities to be designed and operated efficiently; so that our gas reserves could be conserved and deployed for strategic development of the nation's vast gas reserves estimated at 185 trillion standard cubic feet.

Keywords : Assets and Facilities; Capital Intensive; Flow Parameters; Line Pressure Drop; Construction and Operation Costs; Strategic Development; Vast Gas Reserves; Criss-Crossing; Inefficiently Operated and Pipeline Network System.

Nomenclature

 V_L, V_G – liquid and gas local velocities (m/s) \overline{V}_M – mixture mean flow velocity (m/s) μ_G —absolute gas viscosity (Pas) A, B, C—virialcoefficients (J/kg)

AR—area ratio a—Van der Waals pressure correction factor (N/m⁴) b-- Van der Waals volume correction factor (m³) C—empirical constant

 C_p —ratio of static pressure to dynamic pressure d_0 —outside diameter of pipe (inches)

D—nominal pipe diameter (cm) d—pipe inner diameter (inches) E—longitudinal weld joint factor

f₀—friction factor for single phase flow

 f_{TP} —Friction factor two phase flow G_{ave} —average specific gravity of the mixture

G—gas specific gravity g—gravitational acceleration (m²/s) H_s—hoop stress in pipe wall (psi)

K₁, K₂, K₃—constants

K₄—entrance loss coefficient

K₅—exit loss coefficient

K_p—pump loss coefficient

K_w, K_{p1}, K_{p2}—constants \overline{V}_L , \overline{V}_G -liquid and gas average velocities (m/s) $\partial^2 V_L / \partial n^2$, $\partial^2 V_G / \partial n^2$ – liquid and gas acceleration gradients perpendicular to the axis of the pipe (1/s²) $\partial V_L / \partial Z$, $\partial V_G / \partial Z$ – liquid and gas velocity gradients along the axis of the pipe

(1/s)

L—length of pipeline (km) m—mass of gaseous constituents (kg)

P₁—upstream pressure (bar)

P₂—downstream pressure (bar)

P₃—average flow pressure (bar)

P_b—base pressure (bar)

Q—flow capacity (m^3/s) Q_g—gas flow rate (m^3/day)

Re_{NS}—Reynolds number at no slip condition R—individual gas constant (J/kgK) R_L, R_G—liquid and gas holdup S—allowable yield stress for pipe (psi) SG—specific gravity of the liquid relative to water S_Y—maximum yield stress for pipe (psi)

 $\begin{array}{l} T_b & \mbox{--base temperature (K)} \\ T_b & \mbox{--bulk flow temperature (K)} \\ T_{ol} & \mbox{--manufacturers tolerance allowance (m)} \\ t_{--pipe wall thickness (inches)} \\ t_{th} & \mbox{--thread or groove depth (inches)} \\ V_g & \mbox{--gas velocity (ft/s)} \\ V_{--mean flow velocity (m/s)} \\ V_{--mean flow velocity (m/s)} \\ W_{--weight of pipe filled with water (lb/ft)} \\ Y, F_{--derating factors} \\ Z_{--flow compressibility factor} \end{array}$

 $\begin{array}{l} \alpha_2 & - \text{kinetic energy flux coefficient} \\ \lambda & - \text{volume fraction of gas flowing } (m^3/s) \end{array}$

 $\begin{array}{ll} \mu_{NS} & - Absolute \ viscosity \ at \ no \ slip \ condition \ (Pas) \\ \nu_f & - kinematics \ viscosity \ of \ the \ fluid \ stream \ (Pas) \\ \rho_G & - gas \ density \ (kg/m^3) \\ \rho_L & - liquid \ density \ (Kg/m^3) \end{array}$

 $\begin{array}{l} \rho_{NS} & - \text{density at no slip condition } (kg/m^3) \\ \rho_{TP} & - \text{density for two-phase flow } (Kg/m^3) \\ \Delta H & - \text{elevation above datum } (m) \end{array}$

 ΔP_a —acceleration pressure drop (bar)

 ΔP_{ec} —losses due to enlargement and contraction (bar)

 ΔP_e —elevation pressure drop (bar)

 $\Delta \mathbf{P}_{ent}$ —entrance losses (bar)

 $\Delta \mathbf{P}_{exit}$ —exit losses (bar)

 ΔP_{f} —frictional pressure drop (bar)

 ΔP_{ft} —fitting losses (bar)

 ΔP —overall pressure drop along the line (bar)

 ΔP_p —pump losses (bar)

 $\Delta \mathbf{P}_{\mathbf{v}}$ —valve losses (bar)

I. INTRODUCTION

Gas pipeline pressure-flow problem are affected by varieties of factors notably frictional pressure drop and other pressure drops components. These problems inevitably result in the reduction of the operating efficiency of gas pipelines by virtue of reduction in the line throughput and increased pressure drop along the line. It has been established that increased pressure drop will ultimately lead to increased pump power as well as higher cost of design, construction and operations of gas pipelines.

Flow optimization could enable these assets to be put to optimal use throughout their design life. Current gas reserves in Nigeria are conservatively put at approximately 185 trillion standard cubic feet [1]. Therefore, it is imperative that gas facilities be designed and operated efficiently so that available resources could be conserved and deployed for strategic development of the nation's vast gas resources. To this effect, the researcher has developed optimization models employing Weymouth equation, Panhandle A equation and Modified Panhandle B as the fundamental base equation [2, 3, 4].

Study Significance

The developed optimization models is the first of its kind. Matlab is used in coding the programming algorithm. The programming algorithmic coding is the easy to handle type. It produces optimal results of flow variables in few iteration steps. It is strongly believed that the findings in this work could provide the base for further indepth research in gas pipeline flow optimization. The focus should be more biased on optimization of flow capacity viz-a-viz the overall pressure drop along a gas pipeline.

Thus the following objectives are imperative of this work:

(i) Predictability of performance.

(ii) Efficient utilization and deployment of gas pipeline assets and facilities.

(iv) Design efficiency in sizing gas pipelines and associated

equipment.

(v) Greater economy in the design and operation of gas pipelines.

(vi) Longer service life to gas pipelines.

Relevant Optimization Models

Friction factor for two phase flow is expressed as :

$$f_{TP} = \begin{bmatrix} 0.00140 + \frac{0.125}{\left(\rho_G \bar{V}_M D / \mu_G\right)^{0.32}} \end{bmatrix} \times \begin{bmatrix} 1 + \frac{-\ln(1 - R_L)}{S} \end{bmatrix}$$
(1)
$$\mu_G = \mu_{GHC} + \mu_{GN_2} + \mu_{GCO_2} + \mu_{GH_2}S$$

$$S = 1.281 - 0.478(-\ln \lambda) + 0.444(-\ln \lambda)^2 - 0.94(-\ln \lambda)^3 + 0.0843(-\ln \lambda)^4$$

$$\lambda = 1 - R_L$$

$$\lambda = R_G$$

The absolute gas viscosity for the mixture of the hydrocarbon constituents of the gas is expressed by [5]:

$$\mu_{GHC} = 1.02247 \times 10^{-5} \begin{bmatrix} 8.188 \times 10^{-3} - 6.15 \times 10^{-3} \log(\gamma_G) \\ + (1.709 \times 10^{-5} - 2.062 \times 10^{-6} \gamma_G)(1.8T + 0.27) \end{bmatrix}.$$
 (2)

The absolute viscosity of nitrogen is given as:

$$\mu_{GN_2} = 1.02247 \times 10^{-5} \Big[9.59 \times 10^{-3} + 8.48 \times 10^{-3} \log(\gamma_G) \Big] n_{N_2}$$
(3)

The absolute viscosity of carbon dioxide expressed as:

$$\mu_{GCO_2} = 1.02247 \times 10^{-5} \left[6.24 \times 10^{-3} + 9.08 \times 10^{-3} \log(\gamma_G) \right] n_{CO_2} \tag{4}$$

Absolute viscosity of hydrogen sulphide is given as:

$$\mu_{GH_2S} = 1.02247 \times 10^{-5} \left[3.73 \times 10^{-3} + 8.49 \times 10^{-3} \log(\gamma_G) \right] n_{H_2S}$$
(5)

Model for pressure drops along pump and compressor :

$$\Delta P_{p} = \frac{16\rho(1-\eta_{i})}{\pi^{2}d^{4}}Q^{2}$$

$$= K_{p}Q^{2}$$
(6)
where $K_{p} = \frac{16\rho(1-\eta_{i})}{\pi^{2}d^{4}}$

K_p—Pump constant

 $\eta_i=85$ % to 97.5 % for most pumps and compressors [6].

Apparentmolecular weight of natural gas on the basis of the mole fractions of the different constituents is expressed as:

$$M_a = \sum_{i=1}^{N} n_i M_i \tag{7}$$

The gaseous mixture specific gravity is given as:

$$\gamma_G = \frac{M_a}{M_{air}}.$$
(8)

In terms of the pseudo reduced properties, the critical pressure of the gaseous mixture is expressed as:

$$P_c = \sum_{i=1}^{N} n_i P_{Ci} \tag{9}$$

The critical temperature of the mixture is given as:

$$T_{C} = \sum_{i=1}^{N} n_{i} T_{Ci}$$
(10)

The reduced pressure and temperature are :

$$P_r = \frac{P}{P_c} \tag{11}$$

$$T_r = \frac{T}{T_c}$$
(12)

Average gas pressure, P is given by [5]:

$$P = \frac{2}{3} \left(\frac{P_1^3 - P_2^3}{P_1^2 - P_2^2} \right)$$
(13)

Gas density is given as:

$$\rho_G = \frac{P}{ZRT}....(14)$$

OPTIMIZATION MODEL BASED ON PANHANDLE- A EQUATION

The fundamental Panhandle -A equation is expressed as [7] :

$$Q = K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{1}{f}\right)^{0.5394} \left[\frac{P_1^2 - P_2^2}{\overline{T}ZL}\right]^{0.5394} \left(\frac{1}{G}\right)^{0.4606} D^{2.6182}$$
(15)

As it is in Equation (15), $K_{PA} = 1.90826$; the unit of K_{PA} is $m^{3}Km^{0.5394}/K^{0.5394}cm^{2.618}day$.

Conditions of Application

Panhandle-A flow equation is applicable at moderate flow rates for partially developed turbulent flows and for long transmission lines. Usually the pipe wall is smooth. The flow situation is steady state flow, annular with suspended liquid mists in a two phase flow problem. The range of pipe diameter is greater than twelve inches (12"). The flow situation is annular in nature.

Equation (15) could be re expressed as ;

$$Q = K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{1}{f}\right)^{0.5394} \left[\frac{\left(\frac{P_1 + P_2}{1 - 2}\right) \left(\frac{P_1 - P_2}{2}\right)}{\overline{T}ZL}\right]^{0.5394} \left(\frac{1}{G}\right)^{0.4606} D^{2.6182}$$
$$= K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{1}{f}\right)^{0.5394} \left(\frac{1}{Z}\right)^{0.5394} \left[\frac{P_1 + P_2}{\overline{T}L}\right]^{0.5394} \left(\frac{1}{G}\right)^{0.4606} D^{2.6182} \Delta P^{0.5394}. \tag{16}$$
$$\Delta P = P_1 - P_2$$

In Equation 3.43, $K_{PA} = 1.90826$ the unit of K_{PA} is

 $m^{3}Km^{0.5394}/K^{0.5394}cm^{2.618}day$.

Most gas transmission and transportation lines operate at high pressures and flow capacities. Consequently compressibility is a factor that must be given careful consideration in the evaluation of gas flow conditions in such pipelines. The compressibility factor Z, is determined from the gas compressibility equation which is a modification of ideal gas equation of state.

$$\begin{aligned} Q &= K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{1}{Z}\right)^{0.5394} \left(\frac{1}{G}\right)^{0.4606} \left[\frac{P_1 + P_2}{\overline{TL}}\right]^{0.5394} D^{2.6182} \left(\frac{1}{f}\right)^{0.5394} \Delta P^{0.5394} \end{aligned}$$
(17)

$$\begin{aligned} \left(\frac{1}{Z}\right)^{0.5394} &= \left[\frac{3\rho R_0 T (P_1 + P_2)}{2\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}\right]^{0.5394} \\ \left(\frac{1}{G}\right)^{0.4606} &= \left(\frac{M_a Z}{M}\right)^{0.4606} \times \left(\frac{1}{Z}\right)^{0.4606} \times \left(\frac{1}{Z}\right)^{0.5394} = \left(\frac{M_a}{M}\right)^{0.4606} Z^{-0.0788} \\ &= \left(\frac{M_a}{M}\right)^{0.4606} \left[\frac{2\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}{3\rho R_0 T (P_1 + P_2)}\right]^{-0.0788} \\ &= 1.0324 \overline{T} \left(\frac{M_a}{M}\right)^{0.4606} \left[\frac{\rho R_0 T (P_1 + P_2)}{\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}\right]^{0.0788} \\ &= 1.5^{0.0788} K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{M_a}{\overline{M}}\right)^{0.4606} \left[\frac{\rho R_0 T (P_1 + P_2)}{\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}\right]^{0.0788} \left[\frac{P_1 + P_2}{\overline{TL}}\right]^{0.5394} D^{2.6182} \left(\frac{1}{f}\right)^{0.5394} \\ &= 1.5^{0.0788} K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{M_a}{\overline{M}}\right)^{0.4606} \left[\frac{\rho R_0 T (P_1 + P_2)}{\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}\right]^{0.0788} \left[\frac{P_1 + P_2}{\overline{TL}}\right]^{0.5394} D^{2.6182} \left(\frac{1}{f}\right)^{0.5394} \Delta P^{0.5394} \\ &= 1.5^{0.0788} K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{M_a}{\overline{M}}\right)^{0.4606} \left[\frac{\rho R_0 T (P_1 + P_2)}{\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}\right]^{0.0788} \left[\frac{P_1 + P_2}{\overline{TL}}\right]^{0.5394} D^{2.6182} \left(\frac{1}{f}\right)^{0.5394} \Delta P^{0.5394} \\ &= 1.5^{0.0788} K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{M_a}{\overline{M}}\right)^{0.4606} \left[\frac{\rho R_0 T (P_1 + P_2)}{\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}\right]^{0.0788} \left[\frac{P_1 + P_2}{\overline{TL}}\right]^{0.5394} \Delta P^{0.5394} \\ &= 1.5^{0.0788} K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{M_a}{\overline{M}}\right)^{0.4606} \left[\frac{\rho R_0 T (P_1 + P_2)}{\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}\right]^{0.0788} \left[\frac{P_1 + P_2}{\overline{TL}}\right]^{0.5394} \Delta P^{0.5394} \\ &= 1.5^{0.0788} K_{PA} \left(\frac{T_b}{\overline{M}}\right)^{0.5394} \Delta P^{0.5394} \\ &= 1.5^{0.0788} K_{PA} \left($$

Where,

$$K_{1PA} = 1.5^{0.0788} K_{PA} \left(\frac{T_b}{P_b}\right)^{1.788} \left(\frac{M_a}{\overline{M}}\right)^{0.4606} \left[\frac{\rho R_0 T (P_1 + P_2)}{\overline{M} (P_1^2 + P_2^2 + P_1 P_2)}\right]^{0.0788} \left[\frac{P_1 + P_2}{\overline{T}L}\right]^{0.5394} D^{2.6182}$$

The various pressure drop components in terms of the flow capacity are as follows [5] :

(a) Frictional Pressure Drop,
$$\Delta P_{f}$$

$$\Delta P_{f} = f\rho \frac{L}{D} \frac{V^{2}}{2} = \frac{8\rho LQ^{2}}{\pi^{2} D^{5}} f = \frac{8\rho LQ^{2}}{\pi^{2} D^{5}} \left[\frac{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_{G})^{0.32}}{(\rho Q)^{0.32}} \right]$$
Where: $\frac{1}{\pi^{2} D^{5}} \left[0.0112\rho LQ^{2} + 0.9256\rho L(D\mu_{G})^{0.322} (Q^{2} / \rho^{0.32} Q^{0.32}) \right]$
L—over all length of pipeline (km) $2\rho LQ^{2} + 0.9256\rho^{0.68} L(D\mu_{G})^{0.32} Q^{1.68} \right]$
Lu—length of pipe line based on required number of pipes (km)
 $L = L_{L} + L_{ev} + L_{ef} + L_{el}$
Lev—equivalent length of fittings (km)
Let (mathematical descent for the second descent for the second descent for the second descent desc

- L_{el}—equivalent length of elbows (km)
- (b) Elevation Pressure Drop, ΔP_e

$$\Delta P_e = \rho g \Delta H$$

(c) Entrance Losses (Pressure Drop), ΔP_{en}

- (d) Exit hoses (Pressure Drop), $\frac{V^2}{\Delta P_{ex}} = \frac{8\rho(K_{41} + \alpha_2 1)}{\pi^2 D^4}Q^2$ $\Delta P_{ex} = K_{51} \frac{\rho V^2}{2} = \frac{8K_{51}\rho}{\pi^2 D^4}Q^2$
- (e) Pressure Drop Due To Enlargement and Contraction, ΔP_{ec}

$$\Delta P_{ec} = \frac{\rho V^2}{2} \left[\left(1 - \frac{1}{AR^2} \right) - C_p \right], \quad C_p = \frac{P_2 - P_1}{\rho V^2 / 2}$$
$$- \frac{\rho V^2}{2} \left[\left(1 - \frac{1}{AR^2} \right) + \frac{P_1 - P_2}{2} \right]$$

(f) Valves Pressure Drop, 2P $\left[\left(1 - \frac{1}{AR^2} \right)^+ \frac{1}{\rho V^2 / 2} \right]$

$$\Delta P_{V} = f\rho \frac{L_{ev}}{D} \frac{\sqrt{2}}{2} \frac{P}{2} \left[\left(\frac{\prod_{ev}}{D} \frac{\sqrt{2}^{1}}{2} \right) + \frac{\delta P}{D} \frac{P}{2} \frac{Q^{2}}{2} \right] \left[\frac{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_{G})^{0.32}}{(\rho Q)^{0.32}} \right] \\ = \frac{1}{\pi^{2} D^{5}} \left[\left(\frac{1}{0.014} \frac{1}{1} \frac{1}{2} \frac{\delta \rho}{D} \right) \frac{\delta \rho}{d^{2} D^{4}} \frac{Q^{2}}{0.9256} \frac{K^{-1/n} Q^{1/n}}{D\mu_{G}} \right)^{0.322} \left(\frac{Q^{2}}{\rho} \rho^{0.32} Q^{0.32} \right) \right]$$

(g) Fittings Pressure Drop, ΔP_{ft}

$$\Delta P_{ft} = f \rho \frac{1}{D} \frac{1}{D} \frac{1}{2} \rho \frac{1}{2} \frac{1}{2} \rho \frac{1}{2} \frac$$

The value assigned to D/D ratio E_{ij} for the 56 per size (D ratio $D^{0.322}$ (D ratio $D^{0.322}$), type of value or fitting $\pi^2 D^5$

in question. = $\frac{1}{4\pi^2 D_{ef}^5} \left[0.0112 \rho L_{ef} Q^2 + 0.9256 \rho^{0.68} L_{ef} (D\mu_G)^{0.32} Q^{1.68} \right]$ (h) Acceleration Pressure Drop, ΔP_a

$$\Delta P_a = \frac{\rho V^2}{2} = \frac{8\rho}{\pi^2 D^4} Q^2$$

(i) Pump Pressure Drop, △Pp

$$\Delta P_p = K_p Q^2, \qquad K_p = \frac{16\rho(1-\eta)}{\pi^2 D^4}$$

The equation $= \frac{\text{for}_{\mathcal{A}}(\mu m_{P})}{2} P^{2} Q^{2}$ known is the isen $\overline{\text{trop}}_{1}^{2} Q^{2}$ of the particular pump or compressor.

(j) Overall Pressure Drop, ΔP is expressed as:

$$\Delta P = \Delta P_f + \Delta P_e + \Delta P_{a} + \Delta P_{en} + \Delta P_{ec} + \Delta P_{v} + \Delta P_{ft} + \Delta P_p \tag{19}$$

Substituting the various pressure drop components in Equation (3.46);

$$\Delta P = \begin{bmatrix} \frac{1}{\pi^2 D^5} \left[0.0112\rho LQ^2 + 0.9256\rho^{0.68} L(D\mu_G)^{0.32} q^{1.68} \right] + \rho_8 \Delta H + \frac{8\rho}{\pi^2 D^4} Q^2 + \frac{8\rho(K_{41} + \alpha_2 - 1)}{\pi^2 D^4} Q^2 + \frac{8K_{51}\rho}{\pi^2 D^4} Q^2 + \frac{8K_{51}\rho}{\pi^2 D^4} Q^2 + \frac{8P(K_{41} + \alpha_2 - 1)}{\pi^2 D^5} Q^2 + \frac{1}{\pi^2 D^5} \left[0.0112\rho L_{ev} Q^2 + 0.9256\rho^{0.68} L_{ev} (D\mu_G)^{0.32} Q^{1.68} \right] + \frac{1}{\pi^2 D^5} \left[0.0112\rho L_{ef} Q^2 + 0.9256\rho^{0.68} L_{ef} (D\mu_G)^{0.32} Q^{1.68} \right] + \frac{1}{\pi^2 D^5} Q^2 + \frac{8\rho}{\pi^2 D^4} Q^2 + \frac{8\rho(K_{41} + \alpha_2 - 1)}{\pi^2 D^4} Q^2 + \frac{8K_{51}\rho}{\pi^2 D^4} Q^2 + \frac{16\rho(1 - \eta)}{\pi^2 D^5} Q^2 + \frac{16\rho(1 - \eta)}{\pi^2 D^5} Q^2 + \frac{16\rho(1 - \eta)}{\pi^2 D^5} Q^2 \end{bmatrix} + \frac{1}{\pi^2 D^5} \left[0.9256\rho^{0.68} L(D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ef} (D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ef} (D\mu_G)^{0.32} \right] Q^{1.68} + K^{-1/n} Q^{1/n} + \rho_8 \Delta H \\ = \left[\frac{0.0112\rho L}{\pi^2 D^5} + \frac{8\rho}{\pi^2 D^4} + \frac{8\rho(K_{41} + \alpha_2 - 1)}{\pi^2 D^5} + \frac{8K_{51}\rho}{\pi^2 D^4} + \frac{1}{\pi^2 D^5} Q^2 + \frac{16\rho(1 - \eta)}{\pi^2 D^5} Q^2 + \frac{16\rho(1 - \eta)}{\pi^2 D^4} Q^2 \right] + \frac{1}{\pi^2 D^5} \left[\frac{0.0112\rho L}{\pi^2 D^5} + \frac{8\rho(K_{41} + \alpha_2 - 1)}{\pi^2 D^5} + \frac{8K_{51}\rho}{\pi^2 D^4} + \frac{1}{\pi^2 D^5} Q^2 + \frac{16\rho(1 - \eta)}{\pi^2 D^5} Q^2 \right] Q^{1.68} + K^{-1/n} Q^{1/n} + \rho_8 \Delta H \\ = \left[\frac{0.0112\rho L}{\pi^2 D^5} + \frac{8\rho}{\pi^2 D^4} + \frac{8\rho(K_{41} + \alpha_2 - 1)}{\pi^2 D^4} + \frac{8K_{51}\rho}{\pi^2 D^4} + \left(1 - \frac{1}{AR^2}\right) \frac{8\rho}{\pi^2 D^4} + \frac{0.0112\rho L_{ev}}{\pi^2 D^5} + \frac{0.0112\rho L_{ef}}{\pi^2 D^5} + \frac{16\rho(1 - \eta)}{\pi^2 D^4} \right] Q^2 \\ + \left\{ \frac{1}{\pi^2 D^5} \left[0.9256\rho^{0.68} L(D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ev} (D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ef} (D\mu_G)^{0.32} \right] \right\} Q^{1.68} \\ + K^{-1/n} Q^{1/n} + \rho_8 \Delta H \\ = \left[\frac{0.0112\rho L}{\pi^2 D^5} \left\{ 0.9256\rho^{0.68} L(D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ev} (D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ef} (D\mu_G)^{0.32} \right) \right] Q^{1.68} \\ + K^{-1/n} Q^{1/n} + \rho_8 \Delta H \\ = \left[\frac{0.012\rho L}{\pi^2 D^5} \left\{ 0.9256\rho^{0.68} L(D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ev} (D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ef} (D\mu_G)^{0.32} \right) \right] Q^{1.68} \\ + K^{-1/n} Q^{1/n} + \rho_8 \Delta H \\ = \left[\frac{0.012\rho L}{\pi^2 D^5} \left\{ 0.9256\rho^{0.68} L(D\mu_G)^{0.32} + 0.9256\rho^{0.68} L_{ev} (D\mu_G)^{0.32} + 0.9256\rho^{0.68$$

Considering Equation (18), Panhandle-A exponent, n=0.5394 and K=K_{1PA}(1/f)^{0.5394}, therefore, $K^{-1/n}Q^{1/n} = (Q/K)^{1/n} = (Q/K)^{1/0.5394}$

$$= \left[\frac{Q}{\kappa_{1PA}\left(\frac{1}{f}\right)^{0.5394}}\right]^{1/0.5394} = \left[\frac{Qf^{0.5394}}{\kappa_{1PA}}\right]^{1/0.5394}$$
$$= \left[\frac{Qf^{0.5394}}{\kappa_{1PA}}\right]^{1/0.5394}$$
$$= \frac{Q^{1.8539}f}{\kappa_{1PA}^{1.8539}} = \frac{Q^{1.8539}}{\kappa_{1PA}^{1.8539}} \left[0.0014 + \frac{0.1157(D\mu_G)^{0.32}}{(\rho Q)^{0.32}}\right]$$
$$= \kappa_{1PA}^{-1.8539} \left[0.0014Q^{1.8539} + 0.1157\left(\frac{D\mu_G}{\rho}\right)^{0.32}Q^{1.5339}\right]$$
$$= 0.0014\kappa_{1PA}^{-1.8539}Q^{1.8539} + 0.1157\kappa_{1PA}^{-1.8539}\left(\frac{D\mu_G}{\rho}\right)^{0.32}Q^{1.5339} \right]$$
(21)

Substituting Equation (3.48) in (3.47),

$$\begin{split} \Delta P &= \left[\frac{0.0112\,\rho L}{\pi^2 D^5} + \frac{8\rho}{\pi^2 D^4} + \frac{8\rho \left(K_{41} + \alpha_2 - 1\right)}{\pi^2 D^4} + \frac{8K_{51}\rho}{\pi^2 D^4} + \left(1 - \frac{1}{AR^2}\right) \frac{8\rho}{\pi^2 D^4} + \frac{0.0112\,\rho L}{\pi^2 D^5} + \frac{0.0112\,\rho L}{\pi^2 D^5} + \frac{16\rho \left(1 - \eta\right)}{\pi^2 D^4} \right) \rho^{0.32} \right] \rho^{1.68} \\ &+ \left[\frac{1}{\pi^2 D^5} \left(0.9256\,\rho^{0.68} L \left(D\mu_G \right)^{0.32} + 0.9256\,\rho^{0.68} L_{ev} \left(D\mu_G \right)^{0.32} + 0.9256\,\rho^{0.68} L_{ef} \left(D\mu_G \right)^{0.32} \right) \right] \rho^{1.68} \\ &+ K^{-1/n} \rho^{1/n} + \rho g \Delta H \\ &= \left[\frac{0.0112\,\rho L}{\pi^2 D^5} + \frac{8\rho}{\pi^2 D^4} + \frac{8\rho \left(K_{41} + \alpha_2 - 1\right)}{\pi^2 D^4} + \frac{8K_{51}\rho}{\pi^2 D^4} + \left(1 - \frac{1}{AR^2}\right) \frac{8\rho}{\pi^2 D^4} + \frac{0.0112\,\rho L}{\pi^2 D^5} + \frac{0.0112\,\rho L}{\pi^2 D^5} + \frac{16\rho \left(1 - \eta\right)}{\pi^2 D^4} \right) \rho^{0.32} \\ &+ \left[\frac{1}{\pi^2 D^5} \left(0.9256\,\rho^{0.68} L \left(D\mu_G \right)^{0.32} + 0.9256\,\rho^{0.68} L_{ev} \left(D\mu_G \right)^{0.32} + 0.9256\,\rho^{0.68} L_{ef} \left(D\mu_G \right)^{0.32} + 0.9256\,\rho^{0.68} L_{ef} \left(D\mu_G \right)^{0.32} \right) \rho^{0.32} + 0.9256\,\rho^{0.68} L_{ef} \left(D\mu_G \right)^{0.32} +$$

$$\begin{split} K_{1} &= \left[\frac{0.0112\rho L}{\pi^{2} D^{5}} + \frac{8\rho}{\pi^{2} D^{4}} + \frac{8\rho (K_{41} + \alpha_{2} - 1)}{\pi^{2} D^{4}} + \frac{8K_{51}\rho}{\pi^{2} D^{4}} + \left(1 - \frac{1}{AR^{2}}\right) \frac{8\rho}{\pi^{2} D^{4}} + \frac{0.0112\rho L_{ev}}{\pi^{2} D^{5}} + \frac{0.0112\rho L_{ef}}{\pi^{2} D^{5}} + \frac{16\rho (1 - \eta)}{\pi^{2} D^{5}} \right] \\ K_{2} &= 0.0014 K_{1PB}^{-1.9608} \\ K_{3} &= \left[\frac{1}{\pi^{2} D^{5}} \left(0.9256\rho^{0.68} L \left(D\mu_{G} \right)^{0.32} + 0.9256\rho^{0.68} L_{ev} \left(D\mu_{G} \right)^{0.32} + 0.9256\rho^{0.68} L_{ef} \left(D\mu_{G} \right)^{0.32} \right) \right] \\ K_{4} &= 0.1157 K_{1PB}^{-1.9608} \left(\frac{D\mu_{G}}{\rho} \right)^{0.32} \end{split}$$

Again making reference to Equation (18)

$$Q = K\Delta P^{0.5394} = K_{1PA} \left(\frac{1}{f}\right)^{0.5394} \Delta P^{0.5394}$$

$$= K_{1PA} \left(\frac{\Delta P}{f}\right)^{0.5394} = K_{1PA} \left[\frac{(\rho Q)^{0.32} \Delta P}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}\right]^{0.5394}$$

$$= K_{1PA} \left[\frac{(\rho Q)^{0.32} \Delta P}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}\right]^{0.5394} = K_{1PA} \left[\frac{\Delta P(\rho Q)^{0.32}}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}\right]^{0.5394} = K_{1PA} \left[\frac{\Delta P(\rho Q)^{0.32}}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} = K_{1PA} \left[\frac{\Delta P(\rho Q)^{0.32}}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} = K_{1PA} \left[\frac{\rho^{0.32} Q^{-1.5339} \Delta P}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} = K_{1PA} \left[\frac{\rho^{0.32} Q^{-1.5339} \Delta P}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} = K_{1PA} \left[\frac{\rho^{0.32} Q^{-1.5339} \Delta P}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} = K_{1PA} \left[\frac{\rho^{0.32} Q^{-1.5339} (K_1 Q^2 + K_2 Q^{1.8539} + K_3 Q^{1.68} + K_4 Q^{1.5339} + \rho_8 \Delta H}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} = K_{1PA} \left[\frac{\rho^{0.32} (K_1 Q^{0.4661} + K_2 Q^{0.32} + K_3 Q^{0.1461} + K_4 + \rho_8 \Delta H Q^{-1.5339})}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} = K_{1PA} \left[\frac{\rho^{0.32} (K_1 Q^{0.4661} + K_2 Q^{0.32} + K_3 Q^{0.1461} + K_4 + \rho_8 \Delta H Q^{-1.5339})}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} - 1 = 0$$

$$K_{1PA} \left[\frac{\rho^{0.32} (K_1 Q^{0.4661} + K_2 Q^{0.32} + K_3 Q^{0.1461} + K_4 + \rho_8 \Delta H Q^{-1.5339})}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} - 1 = 0$$

$$K_{1PA} \left[\frac{\rho^{0.32} (K_1 Q^{0.4661} + K_2 Q^{0.32} + K_3 Q^{0.1461} + K_4 + \rho_8 \Delta H Q^{-1.5339})}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} - 1 = 0$$

$$K_{1PA} \left[\frac{\rho^{0.32} (K_1 Q^{0.4661} + K_2 Q^{0.32} + K_3 Q^{0.1461} + K_4 + \rho_8 \Delta H Q^{-1.5339})}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} - 1 = 0$$

$$K_{1PA} \left[\frac{\rho^{0.32} (K_1 Q^{0.4661} + K_2 Q^{0.32} + K_3 Q^{0.1461} + K_4 + \rho_8 \Delta H Q^{-1.5339})}{0.0014(\rho Q)^{0.32} + 0.1157(D\mu_G)^{0.32}}}\right]^{0.5394} - 1 = 0$$

$$K_{1PA} \left[\frac{\rho^{0.32} (K_1 Q^{0.4661} + K_2 Q^{0.32} + K_3 Q^{0.1461} + K_4 + \rho_8 \Delta H Q^{-1.5339})}{0.0014(\rho$$

$$F(Q) = K_{1PA} \left[\frac{\rho^{0.32} \left(K_1 Q^{0.4661} + K_2 Q^{0.32} + K_3 Q^{0.1461} + K_4 + \rho_g \Delta H Q^{-1.5339} \right)}{0.0014 (\rho Q)^{0.32} + 0.1157 (D\mu_G)^{0.32}} \right]^{0.5394} - 1$$
(23)

Differentiating Equation (24) twice with respect to Q

$$\frac{\partial F^{2}(\varrho)}{\partial \varrho^{2}} = K_{1PA}\rho^{0.32}n(n-1) \left[\frac{\left(K_{1}^{\varrho^{0.4661} + K_{2}^{\varrho^{0.32} + K_{3}^{\varrho^{0.1461} + K_{4}^{-1} + \left(D\mu_{G}^{-1}\right)^{0.32} \varrho^{-1.5339}\right)}{0.0014(\rho\varrho)^{0.32} + 0.1157(D\mu_{G})^{0.32}} \right]^{n-2} \times \left\{ \begin{array}{c} 2.0454 \times 10^{-4}\rho^{0.32}K_{2}\varrho^{-0.2139} + \left(0.0539\left(D\mu_{G}^{-1}\right)^{0.32} - 2.4346 \times 10^{-4}\rho^{0.32}K_{3}\right)\varrho^{-0.5339}\right)}{+ \left(0.037\left(D\mu_{G}^{-1}\right)^{0.32}K_{2}^{-4.48 \times 10^{-4}\rho^{0.32}}\right)\varrho^{-0.68} + 0.0169\left(D\mu_{G}^{-1}\right)^{0.32}K_{2}\varrho^{-0.8539}} \right. \right\}^{2} + \left(0.017\left(D\mu_{G}^{-1}\right)^{0.32}\rho_{g\Delta}H\varrho^{-2.5339} - 2.5955 \times 10^{-3}\rho^{0.32}\rho_{g\Delta}H\varrho^{-2.5339}} - \left(0.0014\left(\rho\varrho^{-1}\right)^{0.32}\right)^{2} \right)^{1} \right\}$$

$$+\kappa_{1PA}\rho^{0.32}n\left[\frac{\left(\kappa_{1}\varrho^{0.4661}+\kappa_{2}\varrho^{0.32}+\kappa_{3}\varrho^{0.1461}+\kappa_{4}+\rho_{8}\Delta H\varrho^{-1.5339}\right)}{0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}}\right]^{n-1}\times$$

$$\left\{\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}\right)^{2}\right\}\left[-\frac{(-4.3751\times10^{-5}\rho^{0.32}\kappa_{1}\varrho^{-1.2139}-(-1.3\times10^{-4}\rho^{0.32}\kappa_{1}+0.0287(D\mu_{G})^{0.32})}{(-0.0251(D\mu_{G})^{0.32}-3.0464\times10^{-4}\rho^{0.32})\varrho^{-1.68}}\right]^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}\right)^{2}\right]\left\{-\frac{(-0.0251(D\mu_{G})^{0.32}-3.0464\times10^{-4}\rho^{0.32})\varrho^{-1.68}}{(-0.0144(D\mu_{G})^{0.32}\rho_{8}\Delta H\varrho^{-3.2139}}\right)^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.00574\rho^{0.32}\rho_{8}\Delta H\varrho^{-3.2139}+(-0.449(D\mu_{G})^{0.32}\rho_{8}\Delta H\varrho^{-3.2339})\right)^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32})\varrho^{-0.68}\right)^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}\rho_{8}\Delta H\varrho^{-3.2339}-(-2.4346\times10^{-4}\rho^{0.32}\kappa_{3})\varrho^{-0.5339}\right)^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}+(-1.157(D\mu_{G})^{0.32})\rho^{-0.68}\right)^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}-(-2.5339)\right)^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}\right)^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}\right)^{-1}$$

$$\left(0.0014(\rho\varrho)^{0.32}+0.1157(D\mu_{G})^{0.32}\right)^{-1}$$

Flowchart for The Programing Algorithmic Coding

Optimization Of Flow Parameters In Gas Pipeline Network System (Panhandle-A As Base Equation)

www.ijeijournal.com

Input Parameters

Physical Configu	ration: From Obite to	Bonny NLNG				
Terrain transver	sed: From Obite to No	ele to Bonny NL	NG			
Design Standard	Code: ANSI/ASME B3	1.8 Standard Coc	le			
Length(km)	Diameter(cm)	Manifolds	Design Pressure(bar)	Input/Output Pressure(bar)	Flow Rate(m ³ /s	Operating Tempera (⁽⁰ C)
134	36"(91.44cm)	2	100	84/63	1.8	40
Allowable	Coated/	Flow	Specific Gravity	Buried/Surface	Compressibility Factor	
Pressure	Uncoated	Reynolds				
Drop(bar)		Number				
20	coated	4000	0.6657	Buried	0.749	
Shell Petroleum	Development Compa	ny			•	
Physical Configu	ration: From Soku to	Jonny NLNG				
Terrain transver	sed: From Soku to N	dele to Bonny NL	NG			
Design Standard	Code: ANSI/ASME B3	1.8 Standard Coc	le			
Length(km)	Diameter(cm)	Manifolds	Design	Input/Output	Flow Rate(m ³ /s	Operating
,			Pressure(bar)	Pressure(bar)		Tempera
			/	/		(⁰ C)
116	36"(91.44cm)	1	100	81/63	1.8	40
Allowable	Coated/	Flow	Specific Gravity	Buried/Surface	Compressibility Factor	···
Pressure	Uncoated	Reynolds		, sanace		
Drop(bar)	0	Number				
20	coated	4000	0.6978	Buried	1.273	
Agin Nig Itd						
Length(km)	Diameter(cm)	Manifolds	Pressure(bar)	Pressure(bar)	Flow Rate(m /s	Tempera
124	20///01 11		100	04/62	1.0	(°C)
134	36" (91.44cm)	2	100 Crossifia Counti	84/63 Duried/C	1.8	40
Allowable	Coated/	FIOW	Specific Gravity	Buried/Surface	Compressibility Factor	
Pressure Drop(bar)	Uncoated	Number		1		
20	contod	4000	0.6657	Duriod	0.740	
20	coated	4000	0.6657	Buried	0.749	
ingena das coll						
Physical Configu Terrain transver Design Standard	ration: From Warri to sed: From Ogharepe \ Code: ANSI/ASME B3	Okitipupa Varri to Okitipup 1.8 Standard Coc	a Ondo le	Input/Output	Elow Poto(m ³ /c	Operation
Physical Configu Terrain transver Design Standard Length(km)	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm)	Okitipupa Varri to Okitipup <u>1.8 Standard Coc</u> Manifolds	a Ondo le Design Pressure(bar)	Input/Output Pressure(bar)	Flow Rate(m ³ /s	Operatin Tempera (¹⁰ C)
Physical Configu Terrain transver Design Standard Length(km)	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm)	Okitipupa Varri to Okitipup 1.8 Standard Coc Manifolds 2	a Ondo le Design Pressure(bar) 100	Input/Output Pressure(bar) 80.6/64	Flow Rate(m ³ /s	Operatin Tempera (⁽⁰ C) 40
Physical Configu Terrain transver Design Standard Length(km) 122 Allowable	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/	Okitipupa Varri to Okitipup <u>1.8 Standard Coc</u> Manifolds <u>2</u> Flow	a Ondo le Design Pressure(bar) 100 Specific Gravity	Input/Output Pressure(bar) 80.6/64 Buried/Surface	Flow Rate(m ³ /s 1.8 Compressibility Factor	Operatin Tempera (^{lo} C) 40
Physical Configu Terrain transver Design Standard Length(km) 122 Allowable Pressure	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated	Okitipupa Varri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds	a Ondo le Design Pressure(bar) 100 Specific Gravity	Input/Output Pressure(bar) 80.6/64 Buried/Surface	Flow Rate(m ³ /s	Operatin Tempera (⁽⁰ C) 40
Physical Configu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar)	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated	Okitipupa Narri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number	a Ondo le Design Pressure(bar) 100 Specific Gravity	Input/Output Pressure(bar) 80.6/64 Buried/Surface	Flow Rate(m ³ /s 1.8 Compressibility Factor	Operatin, Tempera (⁽⁰ C) 40
Physical Coofigu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated	Okitipupa Narri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number 4000	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried	Flow Rate(m ³ /s 1.8 Compressibility Factor 1.383	Operatin Tempera (⁰ C) 40
Physical Configu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Corr	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated pany (NGC) Western	Okitipupa Warri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number 4000 Division	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried	Flow Rate(m ³ /s 1.8 Compressibility Factor 1.383	Operatin Tempera (⁽⁰ C) 40
Physical Configu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Com Physical Configu	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated upany (NGC) Western ration: From Okitipu	Okitipupa Warri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number 4000 Division a Ondo to Shaga	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326 mu Lagos	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried	Flow Rate(m ³ /s 1.8 Compressibility Factor 1.383	Operatin Tempera (^{(°} C) 40
Angena Gas Coll Physical Configu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Com Physical Configu Terrain transver Design Standard	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated pany (NGC) Western ration: From Okitipup sed: From Okitipup Gode: ANSI/ASME B3	Okitipupa Narri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number 4000 Division va Ondo to Shagamu 1.8 Standard Coc	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326 mu Lagos Lagos le	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried	Flow Rate(m ³ /s 1.8 Compressibility Factor 1.383	Operatinț Tempera (⁽⁰ C) 40
Algoria Gas Coll Physical Configu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Com Physical Configu Terrain transver Design Standard Length(km)	Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated pany (NGC) Western ration: From Okitipupa C Code: ANSI/ASME B3 Diameter(cm)	Okitipupa Warri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number 4000 Division a Ondo to Shaga Nido to Shagamu 1.8 Standard Coc Manifolds	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326 mu Lagos Lagos le Design	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried	Flow Rate(m ³ /s 1.8 Compressibility Factor 1.383 Flow Rate(m ³ /s	Operatin, Tempera (^{(C} C) 40
Physical Cooffigu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Com Physical Configu Terrain transver Design Standard Length(km)	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated pany (NGC) Western ration: From Okitipun sed: From Okitipuna G Code: ANSI/ASME B3 Diameter(cm)	Okitipupa Warri to Okitipup 1.8 Standard Cox Manifolds 2 Flow Reynolds Number 4000 Division a Ondo to Shagamu 1.8 Standard Coc Manifolds	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326 1.326 u Lagos Lagos le Design Pressure(bar)	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried Input/Output Pressure(bar)	Flow Rate(m ³ /s 1.8 Compressibility Factor 1.383 Flow Rate(m ³ /s	Operatin, Tempera (^{(°} C) 40 Operatin, Tempera (^{(°} C)
Argena Gas Coll Physical Configu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Com Physical Configu Terrain transver Design Standard Length(km) 153	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated upany (NGC) Western ration: From Okitipupa code: From Okitipupa Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm)	Okitipupa Varri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number 4000 Division a Ondo to Shaganu 1.8 Standard Coc Manifolds 2	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326 tu Lagos Lagos le Design Pressure(bar)	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried Input/Output Pressure(bar) 64/44.4	Flow Rate(m ³ /s 1.8 Compressibility Factor 1.383 Flow Rate(m ³ /s 1.8	Operatinț Tempera (^{(°} C) 40 Operatinț Tempera (^{(°} C) 40
Argena Gas Configu Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Com Physical Configu Terrain transver Design Standard Length(km) 153 Allowable	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated pany (NGC) Western ration: From Okitipupa O Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/	Okitipupa Warri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number 4000 Division a Ondo to Shagamu 1.8 Standard Coc Manifolds 2 Flow	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326 mu Lagos Lagos le Design Pressure(bar) 100 Specific Gravity	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried Input/Output Pressure(bar) 64/44.4 Buried/Surface	Flow Rate(m³/s 1.8 Compressibility Factor 1.383 Flow Rate(m³/s 1.8 Compressibility Factor	Operatin, Tempera (^{(C} C) 40 Operatin, Tempera (^{(C} C) 40
Allowable Pressure Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Com Physical Configu Terrain transver Design Standard Length(km) 153 Allowable Pressure	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated coated pany (NGC) Western ration: From Okitipup sed: From Okitipup a Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated	Okitipupa Varri to Okitipup 1.8 Standard Coc Manifolds 2 Flow Reynolds Number 4000 Division a Ondo to Shagamu 1.8 Standard Coc Manifolds 2 Flow Reynolds	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326 mu Lagos Lagos le Design Pressure(bar) 100 Specific Gravity	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried Input/Output Pressure(bar) 64/44.4 Buried/Surface	Flow Rate(m ³ /s 1.8 Compressibility Factor 1.383 Flow Rate(m ³ /s 1.8 Compressibility Factor	Operatin, Tempera (^{(°} C) 40 Operatin, Tempera (^{(°} C) 40
Inspecta Case Configurer Terrain transver Design Standard Length(km) 122 Allowable Pressure Drop(bar) 16.6 Nigeria Gas Com Physical Configurer Terrain transver Design Standard Length(km) 153 Allowable Pressure Drop(bar)	ration: From Warri to sed: From Ogharepe V Code: ANSI/ASME B3 Diameter(cm) 36"(91.44cm) Coated/ Uncoated icoat	Okitipupa Warri to Okitipup 1.8 Standard Cor Manifolds 2 Flow Reynolds Number 4000 Division a Ondo to Shagamu 1.8 Standard Coc Manifolds 2 Flow Reynolds Number	a Ondo le Design Pressure(bar) 100 Specific Gravity 1.326 Uagos Lagos Le Design Pressure(bar) 100 Specific Gravity	Input/Output Pressure(bar) 80.6/64 Buried/Surface Buried Input/Output Pressure(bar) 64/44.4 Buried/Surface	Flow Rate(m³/s 1.8 Compressibility Factor 1.383 Flow Rate(m³/s 1.8 Compressibility Factor	Operatin Temperat (⁽⁰ C) 40 Operatin Temperat (⁽⁰ C) 40

Table 1: Geometric, Configuration and Operational Data for The Case study

(Source :ElfTotal Nig. Ltd, Shell Petroleum Development Company, Agip Nig. Ltd, Nigeria Gas

Company (Eastern Division), Nigeria Gas Company (Western Division))

				- I				J		
C ₁	C ₂	C₃	IC ₄	NC ₄	IC ₅	NC₅	C ₆	С ₇	N ₂	CO2
	ElfTotalNig. Ltd									
0.8450	0.0427	0.025	0.010	0.009	0.007	0.006	0.0015	0.00	0.00	0.047
	Shell Petroleum Development Company									
0.8880	0.05423	0.2882	0.0072	0.009	0.0038	0.00	0.0018	0.00166	0.0002	0.0076
	Agip Nig. Ltd									
0.8436	0.04116	60.2315	0.0165	0.0111	0.004	0.0033	0.0045	0.0033	0.00645	0.05
	Nigeria Gas Company (Eastern Division)									
0.85	0.03795	0.0291	50.0155	0.0101	0.004	0.0033	0.00045	0.0003	0.00645	0.05
	Nigeria Gas Company (Western Division)									
0.85	0.03795	0.02915	0.0155	0.0101	0.004	0.0033	0.0004	50.0003	0.00645	0.05

Table 2: Gas Composition for The Case Study Pipelines

(Source :ElfTotal Nig. Ltd, Shell Petroleum Development Company, Agip Nig. Ltd, Nigeria Gas

Company (Eastern Division), Nigeria Gas Company (Western Division))

Computer Simulation of The Optimization Models % Computer Programmed for The Determination of The Optimal Flow Parameters (SHELL PAN A) % Initialization % Upstream Pressure at OBITE, P1(bar)) P1=84.1; % Downstream presssure at BONNY, P2(bar) P2=71.0: % Base pressure, Pbj Pb=1.03; % Base temperature, Tb Tb=291; % To calculate average flow pressure, P3 P3=(2/3)*(P1^3-P2^3)/(P1^2-P2^2); disp('P3') fprintf('%7.3f\n',P3) % Average flow temperature T=313; % Line diameter(cm), D D=92.44; % Elevation above datum, h h=5500; % Acceleration due gravity, g g=9.8; % Gsa density GD=73.2404/10^4; % Pump isentropin efficiency, ni ni=0.85; % Universal gas constant, R0 R0=8314/10^5; % Weymouth constant % KW=78.85; % Panhandle A constsnt

KPA=1.90826: % Modified Panhandle B constant % KPB=45.03: % Weymouth exponent, nw % nw=0.5: % Panhandle A exponent, np n=0.5394; % Modified Panhandle B exponent, nb % nb=0.51; % Pipe inlet and exit conditions % Well rounded inlet coeffient, k4 K41=0.04; % Well rounded exit coefficient, k5 K51=1.0: % Pump isentropic efficiency, n1 n1=0.95; % Kinetic energy flux coeffiicient, A2 A2=1.036; % Area ratio, AR AR=1.0: % Equivalent length of one globe valves, LEV(m) LEV=350*D; % Equivalent length of 13 globe valves LEVn=(13*LEV)/1000; % Equivalent length of one Tee-joint % Flow through run LET1=20*D; % Flow through branch LET2=60*D; % Total effective length for 13 Tee-joint LETn=(13*(LET1+LET2))/1000; % Line lehgth(Km), LL L=131+(LEVn+LETn); for O=86400:43200:518400 disp('When Q is') $fprintf('\% 6.2f\n',Q)$ % Mean flow velocity, Vm/s) V=(4*Q)/(pi*D^2); % Pressure ratio, CP CP=2*(P2-P1)/(GD*V^2): % Average composition of the gas from production line for the month of August 2008(mole fraction) C1A=0.869859;C2A=0.054574;C3A=0.020709;IC4A=0.004517;NC4A=0.006309;IC5A=0.002178;NC5A=0.0 01787;C6A=0.004627;N2A=0.000598;CO2A=0.034843; % Gas density % GD=73.2924 % Average composition of the gas from production line for the % month of January 2006(mole fraction) C1J=0.707881;C2J=0.052663;C3J=0.026519;IC4J=0.005379;NC4J=0.007883;IC5J=0.002642;NC5J=0.002116 ;C6J=0.004207;N2J=0.001332;CO2J=0.028088; % Gas density GD=77.8621 % Molar mass of gaseous components M11=16;M21=30;M31=44;M4I1=54;M4N1=54;M5I1=72;M5N1=72;M61=86;M71=100;M81=114;M91=128; M101=142;MN21=28;MCO21=44; MAIR=28.97: % Average molecular mass of gaseous mixture(PRODUCTION) in January, 2006 % MGASJ = (C1J*M11 + C2J*M21 + C3J*M31 + IC4J*M4I1 + NC4J*M4N1 + IC5J*M5I1 + NC5J*M5N1 + C6J*M61 + IC5J*M5I1 + NC5J*M5N1 + C6J*M61 + IC5J*M5N1 + C6J*M61 + IC5J*M5N1 + IC5J*M5

N2J*MN21+CO2J*MCO21);

% Specific gravity of the mixture for the month of January, 2006 % GAJ=MGASJ/MAIR: molecular mass of August. % Average gaseous mixture(PRODUCTION) in 2008 MGASA=(C1A*M11+C2A*M21+C3A*M31+IC4A*M4I1+NC4A*M4N1+IC5A*M5I1+NC5A*M5N1+C6A* M61+N2A*MN21+CO2A*MCO21); % Specific gravity of the mixture for the month of August, 2008 GAA=MGASA/MAIR; % Gas density, GD GD=(P3*MGASA)/(R0*T); % % Gas compressibility factor, Z Z=((P3*MGASA)/(GD*8314*T))*10; disp('MGASA GAA Z') fprintf('%12.6f\n',MGASA,GAA,Z) % To calculate gas absolute viscosity. GV(Pas--Ns/m2) % Absolute viscosity of the hydrocarbon components. GVHC, is expressed as: GVHC=(8.188E-3-6.15E-3*(GAA)+(1.709E-5-2.062E-6*log10(GAA))*(1.8*T+0.27))*1.02247E-5*1.15741E-10; % *1.15741E-10; % Absolute viscosity of Nitrogen component GVN=(9.59E-3+8.48E-3*log10(GAA))*N2A*1.02247E-5*1.15741E-10; % Absolute viscosity of carbon dioxide component GVC=(6.24E-3+9.08E-3*log10(GAA))*CO2A*1.02247E-5*1.15741E-10; GV=GVHC+GVN+GVC: disp('GV') fprintf('%30.25f\n',GV) % At the optimal value of Q, dF/dQ=0 % Pump constant, kpp kpp=(16*GD*(1-n1)/(pi^2*D^4)); Determination % of the optimal flow capacity K1PA=1.5^(0.0788)*KPA*(1/10^5)^(0.5394)*(Tb/Pb)^(1.0728)*(MAIR/MGASA)^(0.4606)*((GD*(1/10^4)* R0*T*(P1+P2))/(MGASA*(P1^2+P2^2+P1*P2)))^0.0788*((P1+P2)/(T*L))^0.5394*D^2.6182; K11=((0.0112*GD*L)/(pi^2*D^5))+((8*GD)/(pi^2*D^4))+((8*GD*(K41+A2-1))/(pi^2*D^4))+((8*K51*GD)/(pi^2*D^4)); K12=(1-1/AR^2)*((8*GD)/(pi^2*D^4))+((0.0112*GD*LEVn)/(pi^2*D^5))+((0.0112*GD*LETn)/(pi^2*D^5))+((16*G D*(1-ni))/(pi^2*D^4)); K1=(K11+K12); K2=0.0014*K1PA^(-1.8539); K3=((1/(pi^2*D^5))*(0.9256*(GD)^0.68*L*(D*GV)^0.32+0.9256*(GD)^0.68*LEVn*(D*GV)^0.32+0.9256*(GD)^0.68*LETn*(D*GV)^0.32)); %K4=(0.1157*K1PA^(-1.8539)*((D*GV)/(GD*(1/10^4))^0.32); K4=(0.1157*K1PA^(-1.8539)*((D*GV)/(GD^0.32))); disp('K1PA, K1, K2, K3, K4') fprintf('%20.15f\n',K1PA,K1,K2,K3,K4) %DF1=((K1PA*GD^0.32*n))*((K1*Q^0.4661+K2*Q^0.32+K3*Q^0.1461+K4+(GD*g*h*Q^(-1.5339)/1000)/(0.0014*(GD*Q)^0.32+0.1157*(D*GV)^0.32))^(n-1)); $DF1 = ((K1PA*GD^{0.32*n}))*((K1*Q^{0.4661}+K2*Q^{0.32}+K3*Q^{0.1461}+K4+GD*(1/10^{3})*g*h*Q^{-1}+K4+GD*(1/10^{-1})+K4+GD*(1/10^{-1})*g*h*Q^{-1}+K4+GD*(1/10^{-1})+K4+GD*(1/10^{-1})+K4+GD*(1/10^{-1})+K4+GD*(1/10^{-1})+K4+GD*(1/10^{-1})+K4+GD*(1/10^$ 1.5339))/(0.0014*(GD*Q)^0.32+0.1157*(D*GV)^0.32))^(n-1); DF2=(0.0014*(GD*Q)^0.32+0.1157*(D*GV)^0.32); $DF3 = (K1 * Q^{0.4661} + K2 * Q^{0.32} + K3 * Q^{0.1461} + K4 + GD * (1/10^{3}) * g^{*}h^{*}Q^{(-1.5339)}) * (4.48 * 10^{-1.5339}) * (4.48 + 10^{-1.539}) * (4.48 + 10^{-1.59}) * (4.48 + 10^{-1.59}) * (4$ 4)*(GD)^0.32*Q^(-0.68)); 2.5339): $DF5=(0.0014*(GD*Q)^{(0.32)}+0.1157*(D*GV)^{(0.32)})^{(2)};$ disp('DF1.DF2.DF3.DF4.DPF5') fprintf('%20.15f\n',DF1,DF2,DF3,DF4,DF5) DF=(DF1*((DF2*DF4)+DF3)/DF5); DPov=(K1*Q^2+K2*Q^1.8539+K3*Q^1.68+K4*Q^1.5339)+((GD*g*h)/(10^3));

Optimization Of Flow Parameters In Gas Pipeline Network System (Panhandle-A As Base Equation)

DPov1= $(K1*Q^2);$

```
DPov2=K2*O^1.8539;
  DPov3=K3*O^1.68:
  DPov4=K4*O^1.5339;
  DPov5=GD*g*h/(10^3);
disp('DPov1,DPov2,DPov3,DPov4,DPov5') fprintf('%20.15f\n',DPov1,DPov2,DPov3,DPov4,DPov5)
disp('DPov')
fprintf('%20.10f\n',DPov)
% At the optimal flow capacity, DF=0
if DF<=0
disp('DF
                 DPov')
            0
fprintf('%20.10f\n',DF,Q,DPov)
else
disp('conditions not met')
disp('DF
            0
                 DPov')
fprintf('%20.10f\n',DF,O,DPov)
end
end
% Computer Programme For The Determination of The Optimal
% Maximum or Minimum Values of Flow Capacity and Pressure
% Drop((PANHANDLE A)
   O=Oop;
   DF1=K1PA*GD^(0.32)*n*(n-1):
DF2=K1*Q^{(0.4661)}+K2*Q^{(0.32)}+K2*Q^{(0.1461)}+K4+GD*g**h*Q^{(-1.5339)};
DF3=0.0014*(GD*Q)^(0.32)+0.1157*(D*GV)^(0.32);
   DF4=2.0454E-04*GD^(0.32)*K1*Q^(-0.2139);
   DF5=(0.0539*(D*GV)^(0.32)-2.4346E-4*GD*(0.32)*K3)*Q^(-0.5339);
   DF6=(0.037*(D*GV)^(0.32)*K2-4.48E-4*GD^(0.32))*Q^(-0.68);
   DF7=0.0169*(D*GV)^(0.32)*K2*Q*(-0.8539);
   DF8=0.1775*(D*GV)^(0.32)*GD*g*h*Q^(-2.5339);
   DF9=-2.5955e-3*GD^(0.32)*GD*g*h*Q^(-2.5339);
   DF10=DF3^(2);
DF11=K1PA*GD^(0.32)*n;
DF12=DF2/df3:
DF13=DF10:
DF14=-4.3751e-5*GD^(0.32)**K1*O*(-1.2139);
DF15=-(1.4E-4*K3+0.02878*(D*GV)^(0.32))*Q^(-1.5339);
DF16=-(0.03516*(D*GV)^(0.32)-3.0464E-4*GD^(0.32)*Q^(-1.68);
DF17=-0.0144*(D*GV)^(0.32)*K2*O^(-1.8539);
DF18=0.005746*GD^(0.32)*GD*g*h*Q^(-3.2139);
DF19=0.4498*(D*GV)^(0.32)*GD*g*h*Q^(-3.5339);
DF20=-8.96E-4*GD^(0.32)* (0.0014*(GD*O)^(0.32)+0.1157*(D*GV)*(0.32)*Q^(-0.68);
DF21=8.96E-4*GD^(0.32)*(0.0014*(GD*Q)^(0.32)+0.1157*(D*GV)^(0.32)*Q^(-0.68);
DF22=2.0454E-4*GD^(0.32)*K1*Q^(-0.2139);
DF23=(0.0539*(D*GV)*(0.32)-2.4346E-4^GD^(0.32)*K3)*Q^(-0.5339);
DF24=0.037*(D*GV)^(0.32)-4.48E-4*GD^(0.32))*Q^(-0.68);
DF25=0.0169*(D*GV)^(0.32)*K2*Q^(-0.8539);
DF26=0.1775*(D*GV)^(0.32)*GD*g*h*Q^(-2.5339);
DF27=-2.5955E-3*GD^(0.32)*GD*g*h*Q^(-2.5339);
DF28=DF3^4;
FDD=DF1*(DF2/DF3)^(n-2)*((DF4+DF5+DF6+DF7+DF8+DF9)/DF10)^(2)+DF11*DF12^(n-1)*
((DF13*(DF14+DF15+DF16+DF17+DF18+DF19+DF20)-
DF21*(DF22+DF23+DF24+DF25+DF26+DF2&)/DF28):
if FDD>0
disp('The optimal Minimum value of Q is')
fprintf('%20.10f\',Q)
else
disp('The optimal Maximum value of Qis')
fprintf('%20.10f\',Q)
```

```
ipiniti( /020.101\,,Q
```

end

Computer Program for Graphical Presentation of Results % ELF Panhandle B for 36"(0.9144m) DQop=[-25.413,-24.2427,-8.868,6.608,20.301,41.18,52.9,64.413,77.868,86.991,104.559,118.285]; DD=[-15,-10,-5,5,10,20,25,30,35,40,45,50]; DP1=[-30,-20,-10,10,20,40,50,60,70,80,90,100]; DP2=[-30,-20,-10,10,20,40,50,60,70,80,90,100]; DL=[-15,-10,-5,5,10,20,25,30,35,40,45,50]; %PD=[15.48,12.91,12.34,11.06,10.33,6.56]; plot(DD,DQop,DP1,DQop,DP2,DQop,DL,DQop) %xlabel('P1/P1') ylabel('Qopt/Qopt') title('Graph of Change in Optimal Flow Capacity to Optimal flow Capacity and Change in Upstream Pressure to Upstream Pressure ')

%gtext('Upstream/Optimal Line Pressure Drop'),gtext('Downstrean/Optimal Line Pressure Drop

RESULTS AND DISCUSSION II. The results of optimization of flow variables are in the tables below : Table 3: Results of Optimal Flow-- ElfTotal Nig. Ltd

	MODEL FLOW EC	UATIONS	OPTIMIZATION MODELS		
	OPEATING CONDITIONS	PAN.A	OPEATING CONDITIONS	PAN.A	
FLOW	1.8m ³ /s	1.5m ³ /s	1.8m ³ /s	1.915m ∮s	
CAPACITY					
PRESSURE	20bar	21.1bar	20bai	15.91bar	
DROP					
AMBIENT	291K		291K		
TETEMPERATURE					
BULK	313K		313K		
TEMPERATURE					

Table 4: Results of Optimal Flow--Shell Company (SPDC)

	MODEL FLOW EC	UATIONS	OPTIMIZATION MODELS		
	OPEATING CONDITIONS	PAN A	OPEATING CONDITIONS	PAN A	
FLOW	1.8m ³ /s	1.5m ³ /s	1.8m ³ /s	1.9422m ³ /s	
CAPACITY					
PRESSURE	19.6bar	18bar	19.6bar	17.7535bar	
DROP					
AMBIENT	291K		291K		
TETEMPERATURE					
BULK	313K		313K		
TEMPERATURE					

	MODEL FLOW EC	QUATIONS	OPTIMIZATION, MODELS		
	OPEATING CONDITIONS	PAN.A	OPEATING CONDITIONS	PAN.A	
FLOW	1.8m ³ /s	1.5m ³ /s	1.8m ³ /s	1.94m ³ /s	
CAPACITY					
PRESSURE	21.1ba	21.1bar	21.1bar	28.74bar	
DROP					
AMBIENT	291K		291K		
TETEMPERATURE					
BULK	313K		313K		
TEMPERATURE					

Table 5: Results of Optimal Flow--Agip Nig. Ltd

Table 6 : Results of Optimal Flow--Nigeria Gas Company (NGC)

Eastern Division

	MODEL FLOW ED	UATIONS	OPTIMIZATION MODELS		
	OPEATING CONDITIONS	PAN.A	OPEATING CONDITIONS	PAN.A	
FLOW	1.8m ³ /s	1.59m ³ /s	1.8m ³ /s	1.938m ³ /s	
CAPACITY					
PRESSURE	16.6bar	16.6bar	16.6bar	12.5bar	
DROP					
AMBIENT	291K		291K		
TETEMPERATURE					
BULK	313K		313K		
TEMPERATURE					

 Table 7 : Results of Optimal Flow--Nigeria Gas Company (NGC)

Western Division

	MODEL FLOW EC	UATIONS	OPTIMIZATION MODELS		
	OPEATING CONDITIONS	PAN A	OPEATING CONDITIONS	PAN A	
FLOW	1.8m ³ /s	1.59m ³ /s	1.8m ³ /s	1.938 y/s	
CAPACITY					
PRESSURE	19.6bar	19.6bar	19.6bar	10.91bar	
DROP					
AMBIENT	291K		291K		
TETEMPERATURE					
BULK	313K		313K		
TEMPERATURE					

Tables 3 to 7 show the conditions of the pipelines subject to the operational and optimized conditions. The percentage reduction in pressure drop viz-a-viz the percentage increase in flow throughput under the optimized conditions for all the case study pipelines are as shown in Table 8.

Case Study Gas Pipelines	% Reduction in Line Pressure Drop	% Increase in Flow Throughput (m ³ /s)
	(bar)	
ElfTotal Nig. Ltd	20.45	6.4
Shell Company (SPDC)	9.42	7.9

Agip Nig. Ltd	-3.6	7.78
Nigeria Gas Company (24.7	7.7
Eastern Division)		
Nigeria Gas Company	44.34	7.7
(Western Division)		

Table 8 : Reduction in Line Pressure Drop-Increase in Flow Throughput Under Optimized ConditionApparently, there could be a significant improvement on the line pressure drop to the tune of 10 to 45%. Additional flow throughput of 8% above the normal operational level could also be accommodated.

RECOMMENDATION AND CONCLUSION III.

(i) The optimization scheme clearly confirmed that the present operating conditions of our gas pipelines are truly not optimal. There is therefore urgent need to generate new Design equations incorporating the optimal models for the production of efficient pipelines for future applications. This is to ensure that the operating pipelines and new pipelines networks for gas transmission are not under operated in terms of Pressure-Flow capacity requirements. The design review and analysis would clearlyreduce the cost of design, construction and operations of gas pipelines, associated equipment and facilities. Thus, to plan, set up, operate and execute a gas pipeline at effective cost could be realizable if the optimal pressure-flow capacity requirements are ascertained at the Design and material specification stages.

(ii)In-depth research work is recommended in the area of theoretical, practical and economic consideration of flow compressibility effects as well as hydration problems in sub-cooled under water offshore pipelines. Adequate knowledge of compressibility effects on pressure drop and pressure gradient will go a long way in ascertaining the operating pressure-temperature characteristics of pipelines so as to correlate the operating measured conditions.

(iii) Critical review of as-installed physical, geometric and flow features of gas pipelines for more exact evaluation of losses in fluid energy. If the factors influencing the loss of fluid energy are thoroughly evaluated, the required overall pressure drop in a gas pipeline could be closely specified. This will off-set the problem of underrating or overrating the Pressure-Flow capacity requirements for gas pipelines. This would also aid the sizing of compressors, pumps, valves, fittings and metering devices.

(iv) This optimization and sensitivity analysis is limited to single phase flow of gas. Future research is envisaged to also address optimization models for two phase flow of gas in gas transmission pipelines [PhD Yhesis 1.

Conclusion

Gas Pipeline flow optimization models developed by the researcher for single phase flow of gas have simulated by computationapproach. The simulation results clearly confirmed that there could drastic reduction in pressure drop for the optimized gas pipelines. Additional throughput of about 10% could be accommodated over the normal operational level. Analysis of the optimization results clearly confirmed that operating optimally would have significant impact in reducing the cost of investment and operation of as installed gas pipelines, even the future generation of gas pipelines to be in Nigerian terrain.

REFERENCES

- Adeyanju, O. A. and Oyekunle, L. O. (2012): "Optimization of Natural Gas Transmission in Pipeline", Oil and Gas Journal, Vol. [1]. 69. No 51.
- [2]. Shadrack, MathewUzoma&Abam, D. P. S., "Flow Optimization Models In Gaspipelines (Modified Panhandle-B Equation As Base Equation)", Journalof Scienceand Technology Research, Vol. 6, No. 1, Pp 31-41, April 2013.
- Shadrack, Mathew Uzoma&Abam, D. P. S., "Flow Optimization Models In Gas pipelines(Weymouth Equation As Base Equation)", [3]. African Scienceand Technology Journal Siren Research Centrefor African Universities, Vol. 6, No. 1, Pp 109-123, April 2013. Abam, D. P. S. &Shadrack, MathewUzoma, "Flow Optimization Models In Gas pipelines(Panhandle-A Equation As Base
- [4]. Equation)", Journalof Scienceand Technology Research, Vol. 6, No. 3, Pp 1-16, December, 2013.
- Shadrack, Mathew Uzoma, "Flow Optimization In Natural Gas Pipeline", PhD Thesis, April, 2016, Department of Mechanical [5]. Engineering, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.
- [6]. Guo, B.; Ghalambor, A. and Xu, C. (2005): "A Systematic Approach to Producing Liquid Loading in Gas Wells", paper SPE94081, presented at the SPE production operations symposium, Oklahoma city, April 17-19.
- Fox and McDonald (1981): Introduction to fluid Mechanics, 2nd edition, John Wiley and Sons Inc. New York. [7].
- [8]. Anderson, Allen (1993): "Alfred Rowe and the RO Ranch", Panhandle Plain Historical Review; Pp 24-52.

Dr. Mathew" Optimization of Flow Parameters in Gas Pipeline Network System (Panhandle-A as Base Equation)" International Journal of Engineering Inventions, Vol. 08, No. 2, 2019, pp. 33-54