On The Simultaneous Equations $x + y = 2a^2, 2x + y = 5a^2 + b^2, x + 2y = c^3$

A. Vijayasankar¹, Sharadha Kumar², M.A. Gopalan³

¹Assistant Professor, Department of Mathematics, National College, Affiliated to Bharathidasan University, Trichy-620 001, Tamil Nadu, India. e²Research Scholar, Department of Mathematics, National College, Affiliated to Bharathidasan University ,Trichy-620 001, Tamil Nadu, India. ³Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan

University, Trichy-620 002, Tamil Nadu, India. Corresponding Author: Sharadha Kumar

ABSTRACT: An attempt is made to obtain non-zero distinct integer quintuples (x, y, a, b, c) satisfying the system of three equations $x + y = 2a^2$, $2x + y = 5a^2 + b^2$, $x + 2y = c^3$. Different sets of integer solutions are presented.

KEYWORDS: system of triple equations, triple equations with five unknowns, integer solutions.

I. Introduction

In [1], an attempt has been made to obtain pairs of non-zero distinct integers x, y such that, in each pair

i.
$$x + y = a^2, 2x + y = b^2, x + 2y = a^3$$

ii.
$$x + y = a^2, 2x + y = b^2, x + 2y = c^3$$

[2] illustrates the analysis of obtaining different sets of distinct integer solutions to the two systems of triple equations with five unknowns given by

i.
$$x + y = a^2, 2x + y = b^2, x + 2y = 3c^2$$

ii. $x + y = a^2$, $2x + y = b^2$, $x + 2y = 2c^2$ respectively.

In [3], the system of three equations $x + y = a^2$, $2x + y = b^2$, $x + 2y = a^2 - c^2$ has been studied for its non-zero distinct integer solutions.

This communication exhibits different sets of non-zero distinct integer solutions for the system of triple equations with five unknowns given by $x + y = 2a^2$, $2x + y = 5a^2 + b^2$, $x + 2y = c^3$.

II. Method Of Analysis

Let x, y, a, b and c be five non-zero distinct integers such that

 $x + y = 2a^{2}$ $2x + y = 5a^{2} + b^{2}$ (1)
(2)

$$x + 2y = c^3 \tag{3}$$

Eliminating x and y between (1) to (3), the resulting equation is

$$a^2 - b^2 = c^3$$

Solving (4) through different methods, one obtains different sets of solutions to the system (1) to (3).

Method 1:

1.	
It is observed that (4) is satisfied by	
$a = m(m^2 - n^2), b = n(m^2 - n^2), c = (m^2 - n^2)$	(5)

where $m \neq n$ and $n \neq 1$. Eliminating y between (1) and (2), the values of x is given by

$$x = 3a^{2} + b^{2} = (m^{2} - n^{2})^{2} (3m^{2} - n^{2})$$
(6)

From (1),
$$y = 2a^2 - x = -(m^2 - n^2)^2 (m^2 + n^2)$$
 (7)

(4)

Note that, (5) to (7) satisfy (1) to (3). A few numerical examples are given in Table 1 below:

Tuble 1. Tulleffeur Examples						
т	п	а	b	с	x	у
2	3	-10	-15	-5	525	-325
5	-7	-120	168	-24	71424	-42624
11	9	440	360	40	710400	-323200
9	2	693	154	77	1464463	-503965

Table	1.	Numerical	Evamples
Table	1.	Numerica	L'AIIIDICS

Method 2:

After performing numerical calculations, it is seen that (4) is satisfied by $a = t_{3k+l}, b = t_{3k}, c = (k+l)$

where t_{3k} is the triangular number of rank k.

The corresponding values of x and y satisfying (1) to (3) are represented by

$$x = 3(t_{3,k+1})^2 + (t_{3,k})^2 = (k+1)^4 + (k+1)^3 + (k+1)^2$$
$$y = -(t_{3,k+1})^2 - (t_{3,k})^2 = -\frac{1}{2} [(k+1)^4 + (k+1)^2]$$

A few numerical examples are given in Table 2 below:

 Table 2: Numerical Examples

k	а	b	с	x	у
2	6	3	3	117	-45
3	10	6	4	336	-136
4	15	10	5	775	-325
5	21	15	6	1548	-666

Method 3:

Observe that (4) is satisfied by

$$a = \frac{c^3 + 1}{2}, b = \frac{c^3 - 1}{2}$$

Since our interest is on finding integer solutions, take

c = 2k+1

and we have

 $a = 4k^3 + 6k^2 + 3k + 1$

$$b = 4k^3 + 6k^2 + 3k$$

For this choice, the values of x and y satisfying (1) to (3) are given by

$$x = 4(4k^{3} + 6k^{2} + 3k)^{2} + 6(4k^{3} + 6k^{2} + 3k) + 3$$

$$y = -2(4k^{3} + 6k^{2} + 3k)^{2} - 2(4k^{3} + 6k^{2} + 3k) - 1$$

A few numerical examples are presented in Table 3 below:

Table 3: Numerical Ex	camples
-----------------------	---------

Tuble of Humerlear Enamples					
k	а	b	с	x	у
2	63	62	5	15751	-7813
3	172	171	7	117993	-58825
4	365	364	9	532171	-265721
5	666	665	11	1772893	-885781

Method 4:

Introducing the transformations $a = u + v, b = u - v, c = 2\alpha$

in (4), we have

 $uv = 2\alpha^3$

(9)

(8)

One may choose u and v suitably in (10) and using (9) the corresponding values of x and y satisfying the system of equations (1) to (3) are obtained.

Choice 1:

$$u = \alpha^{3}, v = 2$$

$$\therefore a = \alpha^{3} + 2, b = \alpha^{3} - 2$$

Thus, $x = 3(\alpha^{3} + 2)^{2} + (\alpha^{3} - 2)^{2} = 4\alpha^{6} + 8\alpha^{3} + 16$
 $y = -(\alpha^{3} + 2)^{2} - (\alpha^{3} - 2)^{2} = -(2\alpha^{6} + 8)$

Choice 2:

$$u = 2\alpha^{3}, v = 1$$

$$\therefore a = 2\alpha^{3} + 1, b = 2\alpha^{3} - 1$$

Thus, $x = 3(2\alpha^{3} + 1)^{2} + (2\alpha^{3} - 1)^{2} = 16\alpha^{6} + 8\alpha^{3} + 4$
 $y = -(2\alpha^{3} + 1)^{2} - (2\alpha^{3} - 1)^{2} = -(8\alpha^{6} + 2)$

Choice 3:

$$u = 2\alpha^{2}, v = \alpha$$

$$\therefore a = 2\alpha^{2} + \alpha, b = 2\alpha^{2} - \alpha$$

Thus, $x = 3(2\alpha^{2} + \alpha)^{2} + (2\alpha^{2} - \alpha)^{2} = 16\alpha^{4} + 8\alpha^{3} + 4\alpha^{2}$
 $y = -(2\alpha^{2} + \alpha)^{2} - (2\alpha^{2} - \alpha)^{2} = -(8\alpha^{4} + 2\alpha^{2})$

Choice 4:

$$u = \alpha^{2}, v = 2\alpha$$

$$\therefore a = \alpha^{2} + 2\alpha, b = \alpha^{2} - 2\alpha$$

Thus, $x = 3(\alpha^{2} + 2\alpha)^{2} + (\alpha^{2} - 2\alpha)^{2} = 4\alpha^{4} + 8\alpha^{3} + 16\alpha^{2}$
 $y = -(\alpha^{2} + 2\alpha)^{2} - (\alpha^{2} - 2\alpha)^{2} = -(2\alpha^{4} + 8\alpha^{2})$

Method 5:

The introductions of the transformations

$$a = u + 2k^{3}v, b = u - 2k^{3}v, c = 2k\alpha$$
(11)

in (4), leads to

 $uv = \alpha^3$

(12)

One may choose u and v suitably in (11) and using (12) the corresponding values of x and y satisfying the system of equations (1) to (3) are obtained.

Choice 5:

$$u = \alpha^{3}, v = 1$$

$$\therefore a = \alpha^{3} + 2k^{3}, b = \alpha^{3} - 2k^{3}$$

Thus, $x = 3(\alpha^{3} + 2k^{3})^{2} + (\alpha^{3} - 2k^{3})^{2} = 4\alpha^{6} + 8k^{3}\alpha^{3} + 16k^{6}$
 $y = 2(\alpha^{3} + 2k^{3})^{2} - (4\alpha^{6} + 8k^{3}\alpha^{3} + 16k^{6}) = -(2\alpha^{6} + 8k^{6})$

Choice 6:

$$u = 1, v = \alpha^{3}$$

$$\therefore a = 1 + 2k^{3}\alpha^{3}, b = 1 - 2k^{3}\alpha^{3}$$

Thus, $x = 3(1 + 2k^{3}\alpha^{3})^{2} + (1 - 2k^{3}\alpha^{3})^{2} = 16k^{6}\alpha^{6} + 8k^{3}\alpha^{3} + 4$
 $y = 2(1 + 2k^{3}\alpha^{3})^{2} - (16k^{6}\alpha^{6} + 8k^{3}\alpha^{3} + 4) = -(8k^{6}\alpha^{6} + 2)$

Choice 7:

 $u = \alpha^2, v = \alpha$ $\therefore a = \alpha^2 + 2k^3 \alpha, b = \alpha^2 - 2k^3 \alpha$ Thus, $x = 3(\alpha^2 + 2k^3\alpha)^2 + (\alpha^2 - 2k^3\alpha)^2 = 4\alpha^4 + 16k^6\alpha^2 + 8k^3\alpha^3$ $y = 2(\alpha^{2} + 2k^{3}\alpha)^{2} - (4\alpha^{4} + 16k^{6}\alpha^{2} + 8k^{3}\alpha^{3}) = -(8k^{6}\alpha^{2} + 2\alpha^{4})$

Choice 8:

$$u = \alpha, v = \alpha^{2}$$

$$\therefore a = \alpha + 2k^{3}\alpha^{2}, b = \alpha - 2k^{3}\alpha^{2}$$

Thus, $x = 3(\alpha + 2k^{3}\alpha^{2})^{2} + (\alpha - 2k^{3}\alpha^{2})^{2} = 4\alpha^{2} + 8k^{3}\alpha^{3} + 16k^{6}\alpha^{4}$

$$y = 2(\alpha + 2k^{3}\alpha^{2})^{2} - (4\alpha^{2} + 8k^{3}\alpha^{3} + 16k^{6}\alpha^{4}) = -(2\alpha^{2} + 8k^{6}\alpha^{4})$$

References

- Vidhyalakshmi, S., Mahalaksmi, T., and Shanthi, J. [2019] "On Two Interesting Systems of Diophantine Equations" Journal of Interdisciplinary Cycle Research, Vol. 11, Issue 11: pp.692–695. [1].
- Vidhyalakshmi, S., Mahalaksmi, T., and Ayesha Begum, H. [June-2019] " On Two Interesting Systems of Triple Diophantine [2]. Equations with Five Unknowns" IJRAR, Vol. 6, Issue 2: pp.637–645. Vijayasankar.A., Sharadha Kumar., and Gopalan,M,A. [2020] "On the System of Triple Equations with Five Variables
- [3]. $x + y = a^2$, $2x + y = b^2$, $x + 2y = a^2 - c^2$ "Jouranl of Scientific Computing, Vol. 9, Issue 1: pp.26–28.

Sharadha Kumar " On The Simultaneous Equations	
$x + y = 2a^2$, $2x + y = 5a^2 + b^2$, $x + 2y = c^3$ " International Journal of Engineering Inventio	ons,
Vol. 08, No. 4, 2019, pp. 70-73	