Qos Aware Multihop Based Routing Strategy for Mobile Ad Hoc Network

SURESH .V¹, A YASHWANHT REDDY², P.PRASHANT KUMAR³
¹,²,³Assistant Professor, Sree Dattha Institute of Engineering & Science

Abstract: Here in this paper a MAC layer level clogging detection system has been projected. The planned model aims to explore a system to compute the degree of clogging at victim node with maximal accuracy. This clogging detection apparatus is integrated with a Two-Step Cross Layer Clogging Control Routing Topology. The proposed model involves controlling of clogging in two steps with effective energy capable blocking detection and optimal cost of routing. Packet drop in routing is mostly due to link crash and clogging. Most of the existing clogging control solutions do not have the ability to distinguish between packet loss due to link collapse and packet loss due to clogging. As a result these solutions aim towards action against packet drop due to link malfunction which is an unnecessary effort and ends with of energy resources. The other limit in most of the available way out is the utilization of energy and resources to detect clogging state, degree of clogging and alert the source node about blocking in routing path. This paper explores a cross layered model of clogging recognition an control mechanism that include energy efficient clogging detection, Multicast Group Level Clogging Evaluation and Handling Algorithm [MGLCEH] and Multicast Group Level Load Balancing Algorithm [MGLLBA], which is a hierarchical cross layered base clogging recognition and avoidance model in short can refer as Qos Optimization by cross layered clogging handling (MGLCEH). This paper is supported by the investigational and simulation results show that better store utilization, energy efficiency in clogging detection and clogging control is possible by the proposed topology.

Keywords: Ad-hoc networks, MANETS, clogging, cross-layer design, optimization, random access, wireless network

I. INTRODUCTION

The regular TCP clogging control mostly adapted for internet is not an opposite for MANETs because MANETs are known to affect topology and topology stacks of control mechanisms also the MANETs are environmentally irreconcilable with standard TCP. The packet salvage setbacks and losses in MANETs are primarily due to their node mobility combined with intrinsically unexpected medium which is a direct consequence of the common wireless multi hop channel cannot be construe as clogging losses.

The primary individuality of a wireless multi hop channel is that within interfering range of one node only a single data is transmitted. In MANETs’ networks in a complete area are congested due to shared standard where as internet clogging is single router. A note valuable point is that in a MANET the nodes are not overcrowded.

The main reason for the incompatible of a regular TCP and a MANET is the fact that package losses in MANET may not always be due to network clogging and the transmission times (including the round trip times) vary highly making the packet losses quite difficult to observe.

It is difficult to find the source of clogging in a multi hop network because a single user has the capability to produce a clogging resulting in comparatively lower bandwidth of mobile ad-hoc networks. The wireless networks are more susceptible to clogging problems when compared with the traditional wire line network. Therefore a balanced clogging control system is to be employed compulsorily for the stability and superior performance of a wireless network.

The non homogeneous nature of the application topologies in the multi hop wireless networks, a single and unified solution for the clogging related problems cannot be obtained. Instead a suitable clogging control depending upon the properties and functions of the related network can be designed. As a result, these proposals majorly form a subset of solutions for the identified problems rather than a complete, instantly used topology. They pose as a parent for application-tailored topology stacks. Exceptionally, few of the topology properties serve wide range of applications.

The recent years have witness a much more focus on the clogging control methods directed on the modeling, analysis, algorithm development of closed loop control schemes (e.g. TCP) making them sympathetic for adaption to the mobile hoc networks under the provision of constraints of routing path and bandwidth algorithms possessing the ability to unify and stabilize operation have been evolved. Another major constraint to
be painstaking in a wireless hoc network is due to the MAC (Media access Control) layer. Majority of wireless MACs possess a time constriction permitting a single user to access a physical channel at a given time. The sections in the paper are organized to provide the following details as regards. The section 2 explores the most cited works in the area of text section 3 gives a detail discussion of the projected topology and section 4 relies on the simulation and their results to be consummate by conclusion and references.

1.1 Related Work:

The existing models aim at identify clogging losses in routing path. The packet loss generate a link failure. Making efforts to manage the packet losses that cause link failure are in effective. Another exclusive approach is regularizing the outflow at all nodes participating in routing. In majority of cases of control the clogging at hop level [13] [8]. Henceforth outflow regularization at each node of the network involves operation of expensive wealth. Here in this paper we argue that it is an important to identify the reason for packet loss. Hence we can avoid the clogging control process via outflow regularization under the status of link failure. And also we continue the spat that hop level blocking control alone is not plenty when the hop levels are unable to normalize themselves. The outflow load to control the blocking by utilizing the same resources can be done as in spring level outflow regularization models. Here we propose a cross layer based clogging control routing topology that contains Clogging detection and clogging control models.

II. GROUPS STRUCTURE BASED MULTI CAST ROUTING: AN ORDERED CROSS LAYER APPROACH FOR QOS PROVISIONING BY CLOGGING CONTROL

2.1 Measuring degree of clogging at Relay hop level node:

Unlike conventional networks, nodes in the ad hoc network exhibit a high degree of heterogeneity in terms of both hardware and software configurations. The heterogeneity of the relay hop nodes can reflect as varied radio range, maximum retransmission counts, and barrier capacity. Hence the degree of communication load, packet drop frequency, and degree of buffer consumption at relay hop level node is minimum combination to find the degree of clogging. The usage of these three purposeful values supports to decouple the clogging measure process from other MAC layer behavior.

The degree of channel load, packet drop rate and degree of buffer operation together provide a scope to envisage the blocking due to inappropriate ratio between collision and retransmission count. When retransmissions compared to collision rate are significantly low then outflow delay of relay hop node will increase proportionally, which leads to clogging and reflected as clogging due to buffer overflow.

2.2 Measuring degree of clogging at path level traffic

The degree of clogging at each relay hop together helps to identify the degree of clogging at path level traffic from source to goal node. Each relay hop level node receives the degree of clogging from its neighbor node in hierarchy. Since the destination node, which is last node of the routing path is not outlet the emptiness status. Hence the destination node initiates to assess the degree of clogging at path level traffic. The interrupted updates of clogging status at each relay hop level node to it’s heir in routing path is significantly energy consuming activity. Hence to conserve the energy, the clogging update strategy considers two restricted behavior, which follows:

1. Degree of blocking \(d_c(h_i)\) at relay hop level node \(h_i\) will be sent to its successor \(h_{i+1}\) iff the \(d_c(h_{i+1})\), is greater than the node level clogging threshold \(d_c(\tau)\). Hence the energy conserves due to conditional transmission.

2. If degree of blocking at path level traffic \(d_c(rp)\) that received by node \(h_i\) from its doorway initiator \(h_{i-1}\) is smaller than \(d_c(h_i)\) then it update the \(d_c(rp)\) else it remains same, hence energy conserve due to prevention of \(d_c(rp)\) update.
III. CROSS LAYERED MODEL FOR CLOGGING CONTROL

The packet dipping often occurs in MANETs. The reasons for this packet plummeting are as below

- Transmission Link failure.
- Inferred Transmission due to weighed down Inflow that leads inflow balancing ability to low. This also can claim as packet dropping due to blocking at routing.

The clogging control can be evaluated in two stages by turning over of the zonal head with the network partitioned into Cells as follows

- The Status of blocking at intra Group level
- The status of clogging at inter Group level

This helps in minimization of source level outflow balancing cost and balances the power consumption.

3.1 Network and Node activities under projected topology:

The network is to be crack into Cells

For each Group \(i \) where \(i = 1 \ldots |Z| \), \(|Z|\) is entirety number of Cells

Select Group-head for each Group \(i \)

Find spread load threshold \(\zeta \) for each Group \(i \)

By using \(\zeta \) of each Group spread load threshold for entire network can be measured.

3.2 Splitting the network into Groups:

We opt to the approach described by Mohammad M. Qabajeh et al [15]. With the knowledge of the presented nodes the region is divided into equal partitions. Hexagon is mostly chased for the zonal shape because it covers a highest surface and also provides the improvement of communicating with more neighbors as they have near circular shape of the transmitter. The availability of small, economical low power GPS receiver makes it possible to apply position-based in MANETs. The communication range of node is denote as R and the side of hexagon as L. As the nodes should be able to correspond with each other the R and L are related as \(L = R/2 \).

Each Group has a Group characteristics \(z_{id} \), Group Header \(z_h \) and Group Leader Backup \(z_{h'} \).

The \(z_h \) node maintains in sequence about all the nodes in a Group with their positions and IDs. Also, maintain information about the \(z_h \) of the neighboring Cells as shown in the figure 1. The CLB node keeps a copy of the data stored at the \(z_h \) so that it is not lost when the \(z_h \) node is off or touching the Group. By knowing the coordinates of a node location, nodes can execute our self-mapping algorithm of their present locations onto the current Group and calculate its \(z_{id} \) easily. Figure 1 shows the general overview of the network architecture.

3.3 Selecting Group Heads

A Group-Head selection occur under the pressure of the Following metrics:

a. Node positions: A node with a position \(p \) that is close to the centre is more likely to act as a Group head.
b. Optimum energy available: a node with higher energy \(e \) more probably acts as a Group head.
c. Computational ability: the node with high computational ability \(c \) is more possible to act as a Group Head.
d. Low mobility: the mobility \(m \) of a node is inversly proportional to its selection as a Group head.

Each node of the Group broadcasts \((p, e, c, m)\). The node that identified itself as most optimal in \((p, e, c, m)\) metrics, announces itself as Group head \(z_h \). The next optimal node in sequence claims itself as reserve Group head \(z_{h'} \).

3.4 Information sharing within multicast group [between Node and group head]

Each node \(n \) that is a subset to Group \(Z \) verifies the Inflow load and shares degree of inflow load \(d_{ill} \) with Group head. Once received from each node \(k \) of the Group \(i \), the Group head \(z_h \) calculates the degree of inflow load at Group level \(z_{d_{ill}} \).

\[
\begin{align*}
\sum_{n=1}^{n_{d_{ill}}} z_{d_{ill}} &= \sum_{k=1}^{k_{d_{ill}}} z_{n_{d_{ill}}} \\
nd_{ill} &= \sum_{n=1}^{n_{d_{ill}}} z_{n_{d_{ill}}}
\end{align*}
\]
3.5 Multicast Group Level Clogging Evaluation and Handling Algorithm (MGLCEH)

Multicast Group Level Clogging Evaluation and Handling Algorithm abbreviated as MGLCEH is presented in this section. MGLCEH is an optimal algorithm that helps in locating the packet dropping under clogging. This evaluation occurs under Mac layer and then alerts network layer.

3.6 Multicast Group Level Load Balancing Algorithm (MGLLBA)

This event occurs if Mac-layer alert indicates the clogging circumstance. Once the routing topology gets an alert from the Mac layer about the blocking at a node, it alerts the fellow citizen node which is the source node for conflict node. Hence node evaluates its buffer time such that

\[
\sum_{i=1}^{n} d_{il} - d_{il} \leq \varepsilon,
\]

where \(\varepsilon\) can be calculated with the following equation

\[
\varepsilon = \frac{\sum_{i=1}^{n} z_{dil} - d_{il}}{zn_j}
\]

In case that the node is not able to normalize its outflow so that disagreement node terminates blocking then it alerts the Group-head (Group-head of the Group, \(s \in Z_r\)). Subsequent event alerts all the nodes in the network building the all nodes in the upstream of source node to way out load using the above stated slant. Then all nodes update their outflow and send to Group-head, then Group-head calculate and confirms integrity of the outflow by evaluation with \(d_{il}\). If \(z_{dil} \geq d_{il} + \varepsilon\) concludes that clogging at contention node maintained by outflow regularization at current Group level. If \(z_{dil} < d_{il} + \varepsilon\) then CEA will be started at Group, which is adjacent upstream Group to the clogging Group in transmissible. In this process Group head of the Group firstly alerts the Group head of the counterpart Group which then alerts all nodes that belongs to the route path. The above procedure of outflow regularization at Group level can be referred as BGLLBA (Multicast Group Level Load Balancing Algorithm). Hence the nodes belong to Group regularize their outflow load by utilize BGLLBA and alert Group-head about their efficient degree of inflow load. Then \(z_{dil}\) measures \(z_{dil}\) and verifies the result of \(z_{dil} \geq d_{il} + \varepsilon\). True indicates the elimination or minimization of clogging at the Group due to the outflow regularization at Group, if false then Group head of the Group performs the action of alerting all other Group heads using a broadcasting instrument about the clogging at adjacent Group in downstream of the hereditary. Hence all Cells in the upstream side of the Group apply BGLLBA and the Cells in downstream side of the Group fill in their outflow. Then all Cells broadcast \(z_{dil}\) to resource Group. Hence the source Group revaluates the \(d_{il}\). Basing on the \(d_{il}\), source node regularize its outflow load.

Fig 3: Multicast Group Level Load Balancing Algorithm

IV. SIMULATIONS AND RESULTS DISCUSSION

In this section we discuss the outcome acquired from simulation conducted using a simulation model developed by using MXML in this section. We evaluated concert using ad hoc with the following considerations:

a. Short length path: A route with 15 hops
b. Middling length: A route with 40 hops
c. Max Length: A route with 81 hops
The same load is given to all the paths with regular intervals. The figure 3 indicates the load given in simulations. The figure 4 concludes the improvement of MGLCEH over clogging control topology [8] in clogging control cost. A. The clogging detection cost evaluation between MGLCEH and clogging control topology [8] is explored in figure 5 that elevates the energy good organization achieved under. The process of capacity of clogging control and clogging detection cost is as follows:

Based on the resource ease of use, bandwidth and energy, for individual operation a threshold value between 0 and 1 assigned. In the mechanism of clogging detection and control the total cost is calculated by summing the cost threshold of every involved event. In figure 5 the judgment between clogging costs observed for MGLCEH and clogging and contention control model [8] are shown.

\[\text{cost}_{ck} = \sum_{e=1}^{E} c_t_e \]

Here \(\text{cost}_{ck} \) is the price of a clogging controlling activity \(c_h \), \(E \) is total amount of events included. \(c_t_e \) is the threshold cost of an event \(e \). The example events are:

1. “alert to source node from Mac layer”
2. “Alert from node to Group head”, “propagation by Group head to other Group heads”
3. “Inflow judgment and outflow regularization”.
4. Alert about \(d_s(h) \)
5. Bring up to date \(d_s(rp) \)

![Fig 3: Load in bytes drive by source node of the routing path [in regular interval of 10 sec]](image)

V. CONCLUSION

This manuscript discussed about proposed “Hierarchical Cross layered blocking Detection and Control Routing Topology” in short referred as “Clogging Detection and have power over with Control seaplane Functionality”, which derived a cross layered clogging detection mechanism with energy effectiveness as primary criteria that included as clogging detection.

![Fig 4: Clogging Control cost](image)
REFERENCES
[9]. Nishant Gupta, Samir R. Das. Energy-Aware On-Demand Routing for Mobile Ad Hoc Networks, OPNET Technologies, Inc. 7255 Woodmont Avenue Bethesda, MD 20814 U.S.A., Computer Science Department SUNY at Stony Brook Stony Brook, NY 11794-4400 U.S.A.