
International Journal of Engineering Inventions

ISSN: 2278-7461, www.ijeijournal.com

Volume 1, Issue 1(August 2012) PP: 38-41

38

Source Code Reusability Metric for Enhanced Legacy Software

Shashank Dhananjaya
1
, Yogesha T

2
, Syeda Misba

3

1
Assistant professor, Dept. of Information Science &Engg, Vidya Vardhaka College of Engineering, Mysuru,

Karnataka INDIA

2
Lecturer, Center for PG Studies, VTU, Bengaluru, Karnataka INDIA

3
Assistant professor, Dept. of Information Science & Engg, New Horizon College of Engineering, Bengaluru,

Karnataka INDIA

Abstract—Most of the application software’s are developed by reusing the source code in order to reduce the

development effort, delivery time, to improve the productivity and quality. Software reuse has been a solution factor

to acquire the existing knowledge from software repository. To add new functionalities source code of the older

version are reused. It is difficult keep track the source code lines that are being reused i.e. changed and added. There

is no indicator of the productivity of the project, nor does it give an insight to the number of expected defects. Both of

these are related to the actual number of new and changed source code lines.In this paper, we have proposed novel

algorithm for software reusability metric using pattern matching. We have implemented using C# language to

evaluate. Result determines the reused files added and changed.

Keywords—software development, software reuse, pattern matching, software metrics, knowledge reuse.

I. INTRODUCTION
Software is continuously growing in its importance for application development. Currently at Hewlett-Packard

Company, approximately 70% of our engineers do some software development. SystematicSoftware reuse is becoming a key

factor in reducing the development time and effort in the software development process and also to improve the software

quality and productivity. New horizons are opened since the idea of using the existing knowledge for software reuse

appeared in 1968 [1]. The main idea behind the software reuse is domain engineering (aka product line engineering).

Reusability is the degree to which a thing can be reused [2]. Software reusability represents the ability to use part or the

whole system in other systems [3,4] which are related to the packaging and scope of the functions that programs

perform [5]. According to [6], the US department of defense alone could save 300 million $ annually by increasing its level

of reuse as little as 1%. Moreover, software reusability aimed to improve productivity, maintainability, portability and

therefore the overall quality of the end product [7]. Ramamoorthy et. al.[8] mentions that the reusability is not limited to the

source code, but it has to include the requirements, design, documents, and test cases besides the source code. New

technologies andtechniques are required to reuse the existing knowledge from software historical data such as code bases,

execution traces, historical code changes, contains a wealth of information about a software project’s status, progress, and

evolution. Basically software reuse process consists of four steps such as identifying the software components,

understanding the context, applying software reuse techniques, integration and evaluating.

II. RELATED WORKS
Several research works has been carried out on software reuse by many authors. Morisio et. al [9] has identified

some of the key factors such as adapting or running a companywide software reuse. Prediction of reusability of object

oriented software systems using clustering approach have been made by [10]. G. Boetticher et.al proposed a neural network

approach that could serve as an economical, automatic tool to generate reusability ranking of software [11]. Morisio et. al [9]

TSE article success and failure factors in software reuse sought key factors that predicted for successful software reuse. Tim

Menzies et. al [12] has identified numerous discrepancies which exist between expert opinion and empirical data reported by

Morisioet.al.’s in TSE article.Hironori Washizaki[13]found that metrics can effectively iden-tify black-box components with

high reusability.ShrddhaSagar[14]proposed aapproach using Fuzzy logic to select highlyreusable components in the systems

will eventuallyhelp in maintaining the system in a better way.G.Singaravel[15] told Reusability is motivated to reduce time

and cost insoftware development.YunwenYe [16]proposedCodeBroker model that helps Java programmers in

learningreusable software components in the context of their normaldevelopment environments and practice by

proactivelydelivering task-relevant and personalized information.Mogilensky[17]written about the importance ofsoftware

component reuse as a key means of improving software productivity and quality. Young Lee and Kai H. Chang[18]In his

paper he proposed a quality model for object-oriented software and an automated metric tool.Octavian Paul[19] proposed

metrics and a mathematical model for the of reusability, adaptability, composeabilityand flexibility of software components.

III. PROPOSED ALGORITHM
Various approaches for source level comparison of different software releases are available but they all have a

serious shortcoming that makes them unsuited for source code metrics with current software development practices they do

not consider files that are being moved or renamed during the course of development. Also, they do not take into account

Source Code Reusability Metric for Enhanced Legacy Software

39

that developers create a significant amount of code by a copy-and-modify approach. This is where this novel approach is

different. This approach compares two source code trees one is called the current source code tree, the other the previous

source code tree and reports which files are changed, added, deleted or unmodified. For each of the changed files, it is

reported how many lines are added or deleted. However, it does not assume a file that is not present in the previous source

code tree is a completely new file. It uses powerful heuristics to determine if another file in the previous source code tree is

highly similar. If so, that file is considered the previous version and the number of added and deleted lines for the current file

is determined. It turns out that a significant number of files are derived from other files in your development organization.

This novel approach helps especially in multi-site project teams it gives more control of and confidence in the metrics

collected on the source code being developed.

A. Determining the difference between files

For the difference between file A and file B, the following algorithm is used.

1. First comments (in C or C++ syntax) are removed.

2. Any whitespace is removed for each line in the file.

3. If the line is empty, it is removed.

4. If a file is considered to be 'generated' (see heuristics above) it is ignored; other files are processed further.

5. A hash code is calculated for each line (the Hash algorithm of .Net for strings is used). This reduces a file to an

array of 32bit integers.

6. This array is sorted. From this, the number of new entries (= new lines) and the number of removed entries (=

deleted lines) is determined in a straightforward way.

B. Algorithm to find matching files

Finding matching files between the older source code tree and the newer sourced code tree is done in two steps:

first potentially matching files are coupled using the Locators second the content of the potentially matching files is

examined to determine whether the newer one is indeed derived from the older one.

The Locator defines, given a file from the older source code tree, how to find a match in the older source code tree:

 SameParentSameName:for a file <new>/mix/sol2/mes.c, only the file <old>/mix/sol2/mes.c is a possible match. The

content of the file mes.c is not examined.

 SameParentDiffName: for a file <new>/mix/sol2/mes.c, any file in the directory <old>/mix/sol2/ is a possible match.

Whether a file actually matches is determined by comparing the contents (see below).

 DiffParentSameName: for a file <new>/mix/sol2/mes.c, the file mes.c in any directory in <old> is a possible match. The

content of all files with the name mes.c are examined to find the one with the best match.

 DiffParentDiffName: for a file <new>/mix/sol2/mes.c, any file at any location in <old> is a possible match. Whether a file

actually matches is determined by comparing the contents.

To determine if the file A (in the old source code tree) that is matched by the algorithm using the Locators as

described above is indeed a previous version of file B (in the new source code tree), the following algorithm is used for each

pair of potentially matching files A and B:

Algorithm 1. Pattern Matching for Software Reuse Metric

1. Let A be the old version file and B be the new version file and

following parameters are calculated:

 The number of new lines in B that are not in A:)(BN

 The number of deleted lines in A that are no longer in B:

)(AD

 The total number of lines in A:)(ALC

 The total number of lines in B:)(BLC

2. The matching criteria are tested. The files are considered to

match if one of the following conditions hold:

10
(

BLC
BN , or less than 10% of file B is new.

2

)(
)(

4

)(
)(

BLC
BN

ALC
AD , or less than a quarter of

file A is deleted and less than half of file B is new. There is no scientific

reasoning for the number used in those formulas; they are determined by

experimentations and guesstimates and built into the tool.

3. If they fulfil the matching criteria (M(A,B) the match value is

determined as:

)(

)(

)(

)(
),(

BLC

BN

ALC

AD
BAM .

The pair of files A and B with the lowest match value is considered to

be the pair where file B is derived from file A.

Source Code Reusability Metric for Enhanced Legacy Software

40

Note that extensions do not play a role in the matching of files. I.e. it is possible that mes.c is considered to match

with include.h. This does (infrequently) occur when code is moved from header files to a source code file (or the other way

around).

IV. RESULTS AND DISCUSSIONS

Fig.1. Identification added, changed and deleted source code in old and new version.

Fig.2. Calculation of total number of new files, changed files, unchanged, generated files and processing time.

This then results in the following output information::

Package: dummy

Locator statistics:

SameParentSameName found 306

SameParentDiffName found 0

DiffParentSameName found 25

DiffParentDiffName found 20

release previous unresolved files sizenew del turn-over

c_new.zip c_old.zip 169 469 58442 33548 8890 1.31

c_old.zip - 408 355 42858 0 0 1.00

name previous status sizeosize newdel

/…/CCeTvPca9554.cd /…/CCeTvPca9554.cd changed 91 93 1 3

/…/cetv9554_m.c /…/cetv9554_m.c unchanged69 69 0 0

Source Code Reusability Metric for Enhanced Legacy Software

41

/…/cetv9554_mpow.c /…/cetv9554_mpow.c changed 61 50 15 4

…

/ … /cetvscreen_msplit.c new 135 0 135 0

/ … /cetvdef_mconst.cgenerated 0 0 0 0

/ … /ICetvBkedSouWireIds.id new 13 0 13 0

/ … /DCetvPictureProfile.dd new 1250 125 0

Total number of files : 469

Number of new files : 159

Number of changed files : 166

Number of unchanged files: 141

Number of generated files: 3

Done.

Processing time 1.6 seconds

The following explains some of the relevant output lines:

 Lines 3-6 show a summary of how many files were tracked to a previous version although the name or the position in the

source code tree was different in the new release. In this case 25 files were moved to a different directory and 20 files were renamed

as well as moved to a different directory.

 Lines 7-9 show a summary of the line counting statistics over the entire release.

C. Implementation of the Algorithm

The development tools used to implement the Algorithm is Visual Studio IDE 2005 for C#.Net,Automation test

scripts are designed for testing the Algorithm using the PERL. The programming language is C#.

V. CONCLUSIONS AND FUTURE WORK

Software reuse has become the solutions to reduce development time, improve productivity and quality. Data

mining techniques can be effectively used in software reuse process. The main contributions for this paper are as follows:

 Identified the need of software reuse in software development practices

 Proposed novel algorithm for software reusability metric using pattern matching

REFERENCES
1. P. Gomes.and C. Bento. "A Case Similarity Metric for Software Reuse and Design," Artif. Intell. Eng. Des.

Anal.Manuf., Vol. 15, pp. 21-35, 2001.

2. W.Frakesand C.Terry, Software Reuse: Metrics and Models, ACM Computing Surveys, Vol. 28, No. 2, June 1996

3. J.A. Mccall, et. al., "Factors in Software Quality," Griffiths Air Force Base, N.Y.RomeAirDevelopmentCenter

Air Force Systems Command, 1977.

4. N.S Gill. "Reusability Issues in Component-Based Development," SigsoftSoftw. Eng. Notes, Vol. 28, pp. 4-4,

2003.

5. J.J.E Gaffney "Metrics in Software Quality Assurance," Presented at the proceedings of the ACM '81

Conference, 1981.

6. J.SPoulin 1997. Measuring Software Reuse–Principles, Practices and Economic Models, Addison-Wesley,

7. A.Sharma.et al., "Reusability assessment for software components," SigsoftSoftw. Eng. Notes, Vol. 34, pp. 1-6,

2009.

8. C.V.Ramamoorthy, et. al., "Support for Reusability in Genesis," Software Engineering, IEEE Transactions, Vol.

14, pp.1145-1154, 1988.

9. M.Morisio, and C. Tully, “Success and Failure Factors in Software Reuse,” IEEE Transactions on Software

Engineering, Vol. 28, No. 4, pp. 340–357, 2002

10. AnjuShri, Parvinder S. Sandhu, Vikas Gupta, SanyamAnand, Prediction of Reusability of Object Oriented

Software Systems Using Clustering Approach, World Academy of Science, Engineering and Technology, pp. 853-

858, 2010.

11. G.Boetticher. and D. Eichmann, “A Neural Network Paradigm for Characterising Reusable Software,”

Proceedings of The 1st Australian Conference on Software Metrics, 18-19 November 1993.

12. Tim Menzies, Justin S. Di Stefano. “More Success and Failure Factors in Software Reuse", IEEE Transactions on

Software Engineering, May 2003

13. Hironori Washizaki,Yoshiaki Fukazawa and Hirokazu YamamotoA Metrics Suite for Measuring Reusability of

Software Components

14. N.W. Nerurkar,Shrddha Sagar.A Soft Computing Based Approach to Estimate Reusability of

SoftwareComponents

15. G.SingaravelDr.V.PalanisamyDr.A.Krishnanoverview analysis of reusability metrics in software development for

risk reduction

16. YunwenYe.Information Delivery in Support of Learning Reusable Software Components on Demand

17. Applying reusability to somm process definition Judah Mogilensky and Dennis Stipe

18. Young Lee and Kai H. ChangReusability and. Maintainability Metrics for Object-Oriented Software

19. Octavian Paul ROTARU Marian DOBREReusability Metrics for Software Components

