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Abstract:––Several experimental situations give rise to analyzing time to response on observational units (survival data) 

using split plot in time models. The general structure of such experiments is that the observation of the time of occurrence of 

an event (called a death, failure, or response) is of interest, the observational units are grouped into whole units and the 

treatments are randomized to whole units if time to the occurrence of an event T is continuous random variable then whole 

units would be considered as subsamples. If time response was grouped into intervals in the above setting, then the sufficient 

statistics in this case would be the counts of observed occurrences of an event (number of deaths failure) within intervals. 

The experiment can then be viewed as a split plot over time where time intervals periods are subunits and whole units would 

be the same as in continuous time setting, and the response variable is some function of the counts. 
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I. INTRODUCTION 
In life testing and medical follow up, observation of the time of occurrence of the event (called death, failure, or 

response) is of interest. Sometimes these occurrences may be prevented for some of the items of the sample by the 

occurrence of some other event (called loss or censoring). Kaplan and Meier (1958) assumed that the life time is independent 

of the potential loss time, and they provided, for random samples of size N, the product-limit (PL) estimate that can be 

defined as follows. List and label the N observed lifetimes (whether to death or loss) in order so that one has 0 ≤ 𝑡1 ≤  𝑡2 ≤
 … ≤ 𝑡𝑁  . Then 𝑃 (𝑡) =    𝑁 − 𝑟 / 𝑁 − 𝑟 + 1  𝑟 , where r assumes those values for which 𝑡𝑟   ≤ 𝑡, and for which 𝑡𝑟    
measures the time to death. This is the distribution-free estimator which maximizes the likelihood function. 

Cox (1972) considered the analysis of censored failure times. He suggested a regression model for the failure time 

T of an individual when values of one or more explanatory variables were available. For T continuous, the hazard function is 

given by 

 λ 𝑡,𝑍 = 𝜆0 𝑡,𝑍 exp  𝛽′𝑍  , 

Which is known as proportional hazard function. It is also known as the multiplicative from of the hazard function with β 

being the vector of the unknown parameters, and λ0(t) is the underlying hazard function when Z=0. For T discrete, the 

logistic model was suggested. A conditional likelihood and maximum likelihood estimates were obtained. However, Cox 

(1972) proportional hazard regression model does not handle grouped survival data or large data sets with many ties (many 

individuals failed at the same time). 

Kalbfleisch and Prentice (1973) obtained a marginal likelihood for the regression parameters by restricting the 

class of models presented by Cox (1972) to those that possessed a strictly monotone survivor function or, equivalently, to 

those for which the hazard function λ0(t) was not identically zero over an open interval. The invariance of this restricted class 

under the group of monotone increasing transformations on T was exploited to derive a marginal likelihood function for β. If 

no ties occur their results and the results of Cox (1972) are the same with a simple justification. But if ties occur in the data 

the results obtained by Kalbfleisch and prentice (1973) are different from those suggested by Cox (1972). 

We have generalized the Cox (1972) model to include main unit variability to be able to get the split plot in time 

model. 

 

II. SPLIT PLOT AND VARIANCE COMPONENT LITERATURE 
Our model for survival analysis is based on using a split plot in time model, and therefore we need to consider the 

related literature. 

What we need in the variance component analysis is a method for split plot models with unequal sub-plot 

variances. We must mention here that we could not find any work in the literature that has been done for this particular 

study. However, a list and a presentation of the literature that has been done in both split plot model and variance component 

areas separately and combined will be considered. Some of the listed literature might not be of direct relation to our study, 

and some are related in the sense that they gave us an idea on the approach that we have used for variance component 

estimation. 

A common assumption in split plot experiments is that the error variance for subplot treatments are the same. 

Curnow (1957) provided tests of significance for the departure from equality of the variances for different subplot 

treatments. Also, an estimate of tie ratio of a pair of such variances was provided in this paper. For the balanced two-way 

layout split plot design, Li and Klotz (1978) compared maximum likelihood estimators and restricted maximum likelihood 

estimators with minimum variance unbiased estimators of variance components. Performance was compared in terms of man 

squared error for the three estimators. For a general mixed-effects model Brown (1978) viewed the problem of estimating 

variance components in the context of linear model theory. 
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The approach was to estimate the unknown vector of a parameters β by some vector b and thus obtain a vector of 

residuals e=Y-Xb. A vector of the squares and cross products of the residuals was then obtained, the expectation of which 

was a known linear transformation of the variance components. 

 

III. GROUPED TIME, MULTIPLICATIVE AND ADDITIVE HAZARD CONDITIONAL 

ON MAIN UNIT WITH NORMAL MAIN UNIT ERROR 

As presented  later, the structure for design that will be considered is that we have J main units per treatment 

combination according to a CRD, 𝑛𝑖𝑗  observation units in each main unit and time to response on each observational units is 

measured. Time to response is grouped into intervals where the points defining the time intervals are denoted by 0 = 𝑡0 <
𝑡1 < 𝑡2 < ⋯ < 𝑡𝐾  . The number of failures or deaths in time interval k, k=1,….,k is the number of failures or deaths in time 

interval (tk-1,tk]. 

Define 

 𝑛𝑖𝑗 : number of individuals assigned to main unit j of trt i, 

𝑟𝑖𝑗𝑘 : number of individuals failed on trt i, main unit j during time interval k, 

𝑆𝑖𝑗𝑘 : number of individuals survived interval k for trt i and main unit j, and 

𝑛𝑖𝑗𝑘 : number of individuals at risk for trt i, main unit j and time interval k. 

For the no censoring case we have 

 𝑛𝑖𝑗 = 𝑛𝑖𝑗1  ,   𝑎𝑛𝑑   𝑛𝑖𝑗𝑘  =  𝑆𝑖𝑗 (𝑘−1)   𝑓𝑜𝑟 𝑘 > 1.  

For the censoring case we have to define 𝐶𝑖𝑗𝑘  as the number censoring during the kth interval, then 

 𝑛𝑖𝑗1 = 𝑛𝑖𝑗 − 𝑐𝑖𝑗1 ,   𝑎𝑛𝑑 

 𝑛𝑖𝑗𝑘 = 𝑆𝑖𝑗 (𝑘−1) −  𝑐𝑖𝑗𝑘 = 𝑛𝑖𝑗 (𝑘−1) − 𝑟𝑖𝑗 (𝑘−1) − 𝑐𝑖𝑗𝑘   𝑓𝑜𝑟 𝑘 > 1.  

Also, define 

𝑃𝑖𝑗𝑘 ∶  conditional conditional probability that an individual on trt i and main unit j fails in interval k given that it survived 

𝑘 − 1 time intervals, and  

 𝑞𝑖𝑗𝑘 =  1 − 𝑃𝑖𝑗𝑘                 : conditional probability of surviving interval k given survival of k-1 time intervals for an 

individual on trt i and main unit j. 

Now, let 𝐹𝑖𝑗 (𝑡) be the cumulative distribution function for the continuous response time random variable T for a given main 

unit j. Define 𝑆𝑖𝑗 (𝑡) = 1 − 𝐹𝑖𝑗 (𝑡) to be the survival function for trt i and main unit j. 

By definition, 𝑃𝑖𝑗𝑘 ∶  conditional can be written as 

𝑃ijk =
Pr  

failing in time interval 𝐤 for an individual 
on tretment 𝐢 and main unit 𝐣

 

Pr  
surviving  k − 1 time in intervals for 

an individual on treatment i and main unit j
 

 

          =
𝐹𝑖𝑗 (𝑡𝑘) − 𝐹𝑖𝑗 (𝑡𝑘−1)

1 − Fij (tk−1)
 

         =
 1 − 𝐹𝑖𝑗  𝑡𝑘−1  −  1 − 𝐹𝑖𝑗  𝑡𝑘  

 1 − 𝐹𝑖𝑗  𝑡𝑘−1  
 

           = 1 −
 1−𝐹𝑖𝑗  𝑡𝑘 

 

 1−𝐹𝑖𝑗  𝑡𝑘−1 
 
 

𝑞𝑖𝑗𝑘 = 1 − 𝑝𝑖𝑗𝑘 =
 1 − 𝐹𝑖𝑗  𝑡𝑘  

 1 − 𝐹𝑖𝑗  𝑡𝑘−1  
=

𝑆𝑖𝑗 (𝑡𝑘)

𝑆𝑖𝑗 (𝑡𝑘−1)
………  (3.1) 

 Define the hazard function (t) as the limiting conditional probability of failing in an interval given surviving until 

that interval as the interval shrinks, to be 

𝜆 t = lim
∆t→0

Pr⁡(t ≤ T < 𝑡 + ∆𝑡 T ≥ t) 

∆t
=

𝑓(𝑡)

S(t)
  , 

Where f(t) and S(t) are the density function and the survival function, respectively, for the continuous response time random 

variable T. Cox (1972) suggested a regression model for the failure time T of an individual when values of one or more 

explanatory variables are available. For T continuous the hazard function is of form 

𝜆 t, z =  𝜆0 t  exp (β  z)               , 
Which is Known as the proportional hazard function, also known as a multiplicative from of the hazard function, where λ0(t) 

is the underlying hazard function when Z≡0. β is the vector of unknown parameters. 

  

          For our problem we generalize Cox's (1972) model to include the extra variability involved. In other words we will try 

to model the continuous time variable in a way related to Cox's (1972) model to include the random component ɛij. 

 The multiplicative hazard function for trt i and main j that will be considered is as follows 

𝜆𝑖𝑗  t = 𝜆0 t  𝑒𝑥𝑝 𝛽 Xi t + εij  , 

Where λ0(t) is the underlying hazard when Xi(t)=0 and εij=0, β is the vector of unknown parameters and Xi(t) are the 

variables influencing failure times. Also, the survival function for trt i given main unit j is given by 
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












  du )( - exp(t)F -1(t)

t

0

ijij uS ij  

and therefore 














  du )(u)xexp()( - exp(t) iji

t

0

0ij  uS   ………….. (3.2) 

 Substituting (3.2) in (3.1) we get 

.du )ε(u)x (u)exp(λ - expq iji

t

t

0ijk

k

1-k














  

 
 Now, let us assume that Xi(t) is constant on interval k, i.e. , let Xik = value of Xi(t) on interval k. Then we have 

 













  (u)duλ εxexp - expq

k

1-k

t

t

0ijikijk 

 
and this lead to 

  .du uλLogεx)LogqLog(
k

1k

t

t

0ijikijk 


 
  ……….. (3.3) 

Let 

𝑇𝑘 = 𝐿𝑜𝑔  𝜆0 (𝑢) 𝑑𝑢 ,

𝑡𝑘

𝑡𝑘−1

    𝑡𝑕𝑒𝑛 

𝐿𝑜𝑔 (−𝐿𝑜𝑔 𝑞𝑖𝑗𝑘 ) = 𝛽 𝑋𝑖𝑘 + 𝜀𝑖𝑗 + 𝑇𝑘  ,   where  𝛽 ∈ ℝΡ ,   𝑇𝑘 ∈ ℝ  , and 

𝐿𝑜𝑔 (−𝐿𝑜𝑔 𝑞 𝑖𝑗𝑘 ) = 𝐿𝑜𝑔 (−𝐿𝑜𝑔 𝑞𝑖𝑗𝑘 ) + 𝛿𝑖𝑗𝑘   , where 𝑞 𝑖𝑗𝑘 =
𝑆𝑖𝑗𝑘

𝑛 𝑖𝑗𝑘
 , and 𝛿𝑖𝑗𝑘  is a random error defined by 𝛿𝑖𝑗𝑘 =

𝐿𝑜𝑔 (−𝐿𝑜𝑔 𝑞 𝑖𝑗𝑘 ) − 𝐿𝑜𝑔 (−𝐿𝑜𝑔 𝑞𝑖𝑗𝑘 ).

 
 For the additive from of the hazard function we generalize the model presented by Elandt-Johnson (1980) to 

include the random component εij in an additive fashion. Now we drive the model that will be used later in analysis using the 

additive hazard model which is given by 

 λij (t) = λ0 (t) +   xi (t) + εij 

The survivor function is then given by 

 )(1(t)ij tFS   

du )(u)x)( (- exp(t) iji

t

0

0ij    uS …………. (3.4) 

   



t

0

ij du) )(u λ - ( exp        
 

Substituting (3.4) in (3.1) we get 

du)ε(u)x(u)(λ - expq iji

t

t

0ijk

k

1-k














    

Again assume that Xi(t) is constant on interval k. In this case we have 

du)ε(u)x(u)(λ - expq iji

t

t

0ijk

k

1-k














   , 

and this leads to 
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𝑙𝑜𝑔 (𝑞𝑖𝑗𝑘 ) =  𝛽 𝑋𝑖𝑘  (𝑡𝑘−1 − 𝑡𝑘) + 𝜀𝑖𝑗 (𝑡𝑘−1 − 𝑡𝑘) + (−  𝜆0(𝑢) 𝑑𝑢 )

𝑡𝑘

𝑡𝑘−1

……… (3.5) 

Define Zik = 𝑋𝑖𝑘  (𝑡𝑘−1 − 𝑡𝑘) , 𝜀 𝑖𝑗 = 𝜀𝑖𝑗 (𝑡𝑘−1 − 𝑡𝑘),   𝑎𝑛𝑑 𝑇𝑘 = −  𝜆0(𝑢) 𝑑𝑢.

𝑡𝑘

𝑡𝑘−1

 

Then 

 𝐿𝑜𝑔(𝑞𝑖𝑗𝑘 )  =  𝛽 𝑧𝑖𝑘  +  𝜀𝑖𝑗  +  𝑇𝑘   , where 𝛽 ∈ ℝ𝑝   , 𝑇𝑘 ∈ ℝ 

  𝐿𝑜𝑔 (𝑞 𝑖𝑗𝑘 )  =  𝐿𝑜𝑔 (𝑞𝑖𝑗𝑘 ) + 𝛿𝑖𝑗𝑘  , where 𝑞 𝑖𝑗𝑘 =
𝑆𝑖𝑗𝑘

𝑛 𝑖𝑗𝑘
  , and 𝛿𝑖𝑗𝑘  is a random error defined by 𝛿𝑖𝑗𝑘 = 𝐿𝑜𝑔 (𝑞 𝑖𝑗𝑘 )  −

𝐿𝑜𝑔(𝑞𝑖𝑗𝑘 ) . 

Our grouped time model given by the :  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝜇 + 𝛼𝑖 + 𝜀𝑖𝑗 + 𝛽𝑘 + (𝛼𝛽)𝑖𝑘 + 𝛿𝑖𝑗𝑘                

 where i=1, 2, … , I , j=1, 2, …, J , and k=1, 2, …, K . is similar to these continuous models in the sense of having similar set 

of parameters. Therefore we can start with continuous setting for response time T and still and up with grouped time model 

that we considered for analysis although in our case response time T is discrete random variable. 

 It is appropriate here to mention that the proportional hazards model is convenient, e.g., the log(-log) model is to 

be preferred over the log model for the following two reasons: 

 

1)   Using the proportional hazards model leads to work with log(-log) model specified by the equation. 

𝑙𝑜𝑔(−𝑙𝑜𝑔 𝑞𝑖𝑗𝑘 ) =  𝛽 𝑋𝑖𝑘  +  𝜀𝑖𝑗 + 𝑙𝑜𝑔  𝜆0(𝑢) 𝑑𝑢 .

𝑡𝑘

𝑡𝑘−1

 

However, using the additive from for the hazard leads to work with log model specified by the equation 

𝑙𝑜𝑔 (𝑞𝑖𝑗𝑘 ) =  𝛽 𝑋𝑖𝑘  (𝑡𝑘−1 − 𝑡𝑘) + 𝜀𝑖𝑗 (𝑡𝑘−1 − 𝑡𝑘) + (−  𝜆0(𝑢) 𝑑𝑢 ).

𝑡𝑘

𝑡𝑘−1

 

Therefore, inference with log(-log) transform is directly related to the parameters of the continuous time interpretation. The 

log(-log) model is to be preferred since β is invariant to time grouping. 

    2)   The log model has a restricted range𝑞 𝑖𝑗𝑘                ᾿s are observed proportions and thus0 ≤ 𝑞 𝑖𝑗𝑘 ≤ 1                        , which 

implies that 𝑙𝑜𝑔(𝑞 𝑖𝑗𝑘 ) < 0             . 
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