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ABSTRACT: In this paper, the adjacency and incidence matrices to determine the topological structure of a 

mechanism up to structural isomorphism are studied and found that these methods satisfy the uniqueness and 

decidability conditions but are computationally inefficient. The other methods of identification of structural 

isomorphism’s including the characteristic polynomials, the MAX code, and the degree code, are also 

presented. The paper is extremely useful for P.G students, research scholar and designer of mechanisms at the 

conceptual stage of design. 
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I. INTRODUCTION 
Structural analysis means the study of the connection among the members of a mechanism kinematic 

chains and its mobility. Mainly, it is related with the fundamental relationships among the dof, number of links, 

number and the type of joints used in a mechanism. The structural analysis does not deal with the physical 

dimensions of the links. The structural analysis only deals with the general functional characteristics of a 

mechanism. Mostly, graph theory is used as a helping tool in the study of the kinematic structure of 

mechanisms. The on hand study focused only on mechanisms whose corresponding graphs are planar and 

contain no articulation points or bridges. A graph having a bridge means that the mechanism is a combination of 

two mechanisms connected in series with a common link but no common joint, or with a common joint but no 

common link. Such mechanisms are considered as two separate mechanisms. The topological structure of a 

mechanism kinematic chain is represented by a graph. An important step in structural synthesis of kinematic 

chains and mechanisms is the identification of isomorphic structures. Undetected isomorphic structures lead to 

duplicate solutions, while falsely identified isomorphisms reduce the number of feasible solutions for new 

designs. Several methods of identification have been proposed. Some are based on visual approaches while 

others are based on heuristic approaches. Each method has its own advantages and disadvantages. An ideal 

algorithm, however, should satisfy the following conditions [1-23]. 

(a) Uniqueness. There exists a one-to-one correspondence between the kinematic chain and its mathematical 

representation so that structural isomorphism can be uniquely identified. 

(b) Efficiency. The algorithm for identification of isomorphic mechanisms should be simple and 

computationally efficient. This is essential for automated identification of structural isomorphisms. 

(c) Decidability. The mathematical representation can be transformed into a unique kinematic chain. This 

makes it possible for a large number of graphs or mechanisms to be stored in a computer for use by 

designers. 

Both the adjacency and incidence matrices determine the topological structure of a mechanism up to 

structural isomorphism. They satisfy the uniqueness and decodability conditions. However, they are 

computationally inefficient. For this reason, in this paper, other methods of identification have been proposed.  

 

II. NOTATIONS USED 
The following notations have been used. 

ci : degrees of constraint on relative motion imposed by joint i. 

F or dof: degrees of freedom of a mechanism. 

fi : degrees of relative motion permitted by joint i. 

j : number of joints in a mechanism, assuming that all joints are binary. 

ji : number of joints with i dof; namely, j1 denotes the number of 1-dof joints, j2 

denotes the number of 2-dof joints, and so on. 

L: number of independent loops in a mechanism. 

n: number of links in a mechanism, including the fixed link. 

λ: degrees of freedom of the space in which a mechanism is intended to function. 

S: spherical kinematic pair (dof =3). 

E: plane kinematic pair (dof =3). 

G: gear pair (dof =2) 
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Cp: cam pair (dof =2). 

fp:  number of passive dof in a mechanism 

λ is called motion parameter. λ = 6 (for spatial mechanisms kinematic chain) and λ = 3 (for planar and spherical 

mechanism kinematic chain).  

 

III. DEGREES OF FREEDOM (DOF) 
The dof of a mechanism kinematic chain is the first important factor in the study of kinematics and 

dynamics of mechanisms. The dof of a mechanism speaks about to the number of independent parameters 

needed to completely describe the configuration of the mechanism in space.  

 

IV. EQUATION FOR DEGREES OF FREEDOM 

 F = λ(n − j − 1) +  ---------------------------------------------------------------------------------------------(1) 

Eq.(1) is called Grübler or Kutzbach criterion [12]. This criterion was also given by Ball [4]. A binary link with 

two end spherical joints has a redundant dof [see in Figure 1] and this is known as a passive dof as it allows the 

binary link to rotate freely about a line passing through the centers of the two joints without transferring any 

torque about that line. 

In principle, a binary link with either S − S, S − E, or E − E pairs as its end joints possesses one passive dof 

[Table 1].  

 
Table 1 Binary Links with Passive Degrees of Freedom. 

End Joints Passive Degree of Freedom 

S − S Rotation about an axis passing through the centers of the two ball joints. 

S − E Rotation about an axis passing through the center of the ball and perpendicular to plane of the plane pair. 

E − E Sliding along an axis parallel to the line of intersection of the planes of the two E pairs. If the two planes are parallel, 
three passive dof exist. 

 

Equation (1) can be represented by eq.(2)). 

F = λ(n − j − 1) +    -----------------------------------------------------------------------------------(2) 

 

V. LOOP MOBILITY CRITERION 

  = F + λL         ------------------------------------------------------------------------------------------------ (3) 

Equation (3) is known as the loop mobility criterion and is helpful in calculating the number of joint dof 

required for a mechanism  kinematic chain to possess a given number of dof. A multi loop formation chain has 

been shown in Figure 4. 

 

VI. DESIGNATION OF THE LINKS AND THEIR KINEMATIC GRAPHS 
The kinematic graph and kinematic structural representations of the above three links are shown in 

Figure 5. 

 

VII. CONTRACTED GRAPHS 
 A binary string of length k as a string of k vertices of degree 2 connected in series by k + 1 edges is 

represented in Figure 6. The first and last edges of a binary string are necessarily incident to non-binary vertices.  
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A contracted graph is achieved by replacing every binary string in a graph with a single edge and 

therefore a contracted graph has no binary vertices. But, it may contain parallel edges.  The process of removing 

a binary string and replacing it with a single edge is called a contraction. Figure 8 represents the contracted 

graph of Figure 7 in which there are two parallel edges connecting vertices 1 and 2, and two additional parallel 

edges connecting vertices 3 and 4. 

 

VIII. PARTITION OF BINARY LINK CHAINS 
Binary link chains of length 0, 1, 2, and 3 are called the E, Z, D, and V chains, respectively, as depicted in Figure 

9.  

 

 
 

IX. STRUCTURAL ISOMORPHISM 
Two kinematic chains or mechanisms are said to be isomorphic if they share the same topological 

structure. In terms of graphs, there exists a one-to-one correspondence between their vertices and edges that 

preserve the incidence. Mathematically, structural isomorphisms can be identified by their adjacency or 
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incidence matrices. However, the form of an adjacency matrix is dependent on the labeling of links in a 

kinematic chain. 

 

 
 

 
The graph in Figure 11 is obtained from a relabeling of the vertices of the graph in Figure 10. As a 

result, the adjacency matrix for figure 10 is given by equation (4) while the adjacency matrix for Figure 11 is 

represented by eq.(5)  . 

 
Although the graphs shown in Figures 10 and Figures 11 represent the same gear train given in Figure 

12, their adjacency matrices do not assume the same form. The difference comes from the labeling of the links. 

In fact, the two adjacency matrices, Equations (4) and (5), are related by a permutation of the rows and the 

corresponding columns. 

If S is a column matrix whose elements represent the labeling of the links of a kinematic chain and S∗ 

be another column matrix whose elements correspond to a relabeling of the links of the same kinematic chain. 

Then there exists a permutation matrix, P, such that 

S∗ = P S                    ------------------------------------------------------------------------------------------ (6) 

Here , A∗ is related to A by a congruence transformation, 

A∗ = P
T
 AP   ---------------------------------------------------------------------------------------------------- (7) 

Where P
T
 denotes the transpose of P. Theoretically, the permutation matrix P can be derived by 

reordering the columns of an identity matrix. It has a positive or negative unit determinant and the transpose is 

equal to its inverse [17]. 

For example, if the column matrix for the graphs shown in Figure 10 is given by eq. (8) then the column matrix 

for the graph shown in Figure 11 will be represented by eq. (9). Therefore, the permutation matrix is given by 

eq. (10). 

 

 
clearly, Equations (8), (9), and (10) satisfy Equation (6). Substituting Equations (4) and (10) into Equation (7) 

yields 
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Equations (6) and (7) constitute the definition of structural isomorphism. In other words, two kinematic 

structures are said to be isomorphic if there exists a one-to one correspondence between the links of the two 

kinematic chains, Equation (6), and when the links are consistently renumbered, the adjacency matrices of the 

two kinematic chains become identical, Equation (7). 

 

X. PERMUTATION GROUP AND GROUP OF AUTOMORPHISMS 
Here the concept of a permutation group from which a group of automorphisms of a graph is explained. 

Automorphic graphs are useful for elimination of isomorphic graphs at the outset. 

Let  there is a set of elements: a, b, c, d, e, and f . These elements may represent the vertices or edges of a graph, 

or the links or joints of a kinematic chain. Let these elements be arranged in a reference sequence, say (a, b, c, d, 

e, f ). We call an alternate sequence (b, c, a, d, f, e) a permutation of (a, b, c, d, e, f ), in which a → b (element a 

is mapped into b), b → c, c → a, d → d, e → f , and f → e. The reference sequence, (a, b, c, d, e, f ), is called the 

identity permutation. 

In a permutation, some elements may map into other elements, whereas others may map into 

themselves. A mapping of the type a → b → c → a, denoted by (abc), is said to form a cycle. We define the 

length of a cycle by the number of elements in that cycle. In particular, a cycle of length 1 maps an element into 

itself; that is, (d) means that d → d. 

 

X.1 Group of Automorphisms 

Considering labeled graph when its vertices are labeled by the integers 1, 2, . . . , n. In this regard, a 

labeled graph is mapped into another labeled graph when the n integers are permuted. For some permutations, a 

labeled graph may map into itself. The set of those permutations which map the graph into itself form a group 

called a group of automorphisms. This group of automorphisms is said to be a vertex-induced group [9]. 

Similarly, the edges of a graph may be labeled. We call the group of permutations that maps the graph into itself 

an edge-induced group of automorphisms. 

 
 

XI. IDENTIFICATION OF STRUCTURAL ISOMORPHISM 
XI.1 Identification of Structural Isomorphism by Classification 

Kinematic chains (or graphs) can be classified into families according to the number of links, number 

of joints, various link assortments, etc. Clearly, kinematic chains of different families cannot be isomorphic with 

one another. This fact has been used for classification and identification of the topological structures of 

kinematic chains. For example, Buchsbaum and Freudenstein [6] classified the graphs of epicyclic gear trains 

according to their (1) number of vertices, (2) number of edges, and (3) vertex degree listing. Yan and Hwang 

[20, 21] expanded the above classification method to include other attributes such as joint assortments, and so 

on. 

Kinematic chains can also be classified by their corresponding contracted graphs.Obviously, two 

kinematic chains that belong to two different contracted graphs cannot be isomorphic. For example, Figure 13 

shows two (11, 14) graphs. Both graphs contain 11 vertices and 14 edges. In addition, they share the same 

vertex degree listing of 6410. Hence, up to this level of classification, it appears that they might be isomorphic. 

But, the contracted graph of the graph shown in Figure 13(a) has been shown in Figure 14 (a), whereas the 
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contracted graph of the graph shown in Figure 13(b) has been shown in Figure 14 (b). Since both the contracted 

graphs in Figure 14(a) and 14(b) are different, so, they are not isomorphic. 

 

 

 
 

XI.2 Identification of Structural Isomorphism by Characteristic Polynomial 

We know that the problem of testing structural isomorphism is equivalent to one of determining a 

permutation matrix P that transforms the A into A∗ for the two kinematic chains in question. For an n-link 

kinematic chain, there are n! possible ways of labeling the links and, therefore, n! possible permutation matrices. 

Therefore, it is impractical to identify the permutation matrix by trial-and error. Fortunately, there exists a 

convenient method for the determination of such a permutation matrix.  

A well-known theorem of matrix algebra states that the congruence relation given by Equation (7) can exist only 

if the characteristic polynomials of the two adjacency matrices, A and A ∗, are equal to each other; that is, 

 
holds for all x, where x is a dummy variable and I is an identity matrix of the same order as A. We conclude that 

 

Theorem 1 

The adjacency matrices of two isomorphic kinematic chains possess the same characteristic polynomial. 

For example, the linkage characteristic polynomial for the graph shown in Figure 10 is given by eq.(13) and the 

linkage characteristic polynomial for the graph shown in Figure 11 is given by eq.(14). 

 

 
Since p(x) = p∗(x), the two graphs are most likely isomorphic. 

It should be noted that the above theorem is a necessary, but not a sufficient condition for two 

kinematic chains to be isomorphic. Although this condition is not completely discriminatory, it can successfully 

distinguish bar linkages with up to eight links. As the number of links increases, however, the probability of 

failing to detect structural isomorphism increases. Counter examples have been found where two nonisomorphic 

kinematic chains share the same characteristic polynomial [14]. 

For example,  

Figure 15 shows two (10, 13) nonisomorphic graphs sharing the characteristic polynomial: 

p(x) = x
10

 − 13x
8
 + 53x

6
 − 8x

5
 − 82x

4
 + 26x

3
 + 39x

2
 − 16x ------------------------------------------------------ (15) 

Figure 16 shows two (11, 14) nonisomorphic graphs sharing the characteristic polynomial: 

p(x) = x
11

 − 14x
9
 + 65x

7
 – 13 x

5
 + 112x

3
 + 32x       ----------------------------------------------------------------(16) 

This method of identification requires the derivation of characteristic polynomials. Uicker and Raicu 

[17] presented a computer method for derivation of the coefficients numerically. Yan and Hall [18, 19] 

developed a set of rules for determination of the polynomials by inspection. Tsai [16] suggested the use of the 

random number technique to improve the computational efficiency.  

Because the characteristic polynomial cannot fully identify structural isomorphisms, the method is often 

augmented by other techniques such as classification of kinematic chains according to their contracted graphs. 

For example, the graph shown in Figure 15(a) belongs to the contracted graph shown in Figure 14 (a), whereas 

the one shown in Figure 15(b) belongs to the Figure 14 (b) contracted graph. Therefore, these two graphs cannot 
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be isomorphic although they share a common characteristic polynomial. Similarly, the graphs shown in Figure 

16(a) and Figure 16(b) cannot be isomorphic because they belong to two different contracted graphs shown in 

Figure 14(a) and Figure 14 (b) respectively. 

 
 

XI.3 Identification of Structural Isomorphism by Optimum Code 

Despite the extraordinary degree of discrimination, the method of characteristic polynomial encounters 

difficulties in three respects. (1) The method is not decodable. (2) It is not a sufficient condition for 

identification of structural isomorphism. (3) The computational efficiency is poor. To overcome these 

difficulties, Ambekar and Agrawal [1, 2, 3] suggested a method of identification called the optimum code. In 

contrast to the characteristic polynomial method, the optimum code guarantees the decodability and positive 

identification of structural isomorphism. The method involves a technique for labeling the links of a kinematic 

chain such that a binary string obtained by concatenating the upper triangular elements of the adjacency matrix 

row by row, excluding the diagonal elements, is maximized. This is called the MAX code. To illustrate the 

concept, we consider the six-link Stephenson chain shown in Figure 8 (a).The corresponding labeled graph is 

shown in Figure 8 (b). Let the labeling of the vertices shown in Figure 8 (b) be denoted by an identity 

permutation a1 = (1)(2)(3)(4)(5)(6). Then the adjacency matrix is given by eq. (17). 

 
Excluding the diagonal elements, there are 15 binary elements in the upper triangular adjacency matrix, namely 

10011, 1000, 100, 11, and 0. Writing these elements in sequence we obtain a binary string of 100111000100110, 

which can be converted into a decimal number as follows. 

1001110001001102 = 214 + 211 + 210 + 29 + 25 + 22 + 21 = 20006 . 

Figure 17(a) shows a different labeling of the vertices that corresponds to the permutation a2 = (1)(245)(36). For 

this labeling, the adjacency matrix becomes eq. (18). 

 
 

Therefore, the upper triangular elements of A2 form a binary string of 1110000100100 11, which is 

equal to a decimal number of 28819.It can be shown that, among all possible labelings of the graph, the labeling 

shown in Figure 17(a) leads to a maximum number. We call the number 28819 the MAX code of the Stephenson 

chain. We note that several labelings of a graph may lead to the same MAX code due to the existence of graph 

automorphisms. Alternately,we can also search for a labeling of the Stephenson chain that minimizes the binary 

string of the upper triangular elements. We call the resulting decimal number the MIN code. Intuitively, for the 

permutation a3 = (15) (3) (246) shown in Figure 17(b), we obtain a minimum binary string of 

000110011101100, which gives 3308 as the MIN code. 

Using the above method, the problem of testing structural isomorphism is converted into a problem of 

comparing the optimum codes of two kinematic chains in question.  

 

XI.4 Identification of Structural Isomorphism by Degree Code 

There is a heuristic algorithm called the degree code [15].  

 In the degree code, the vertex degrees are used as a constraint for labeling the links of a kinematic 

chain. Links of the same degrees are grouped together and the various groups of links are arranged in a 

descending order according to their vertex degree. 

The procedure for finding the degree code of a kinematic chain can be summarized as follows: 
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1. Identify the degree of each vertex in the graph of a kinematic chain and arrange the vertices of the same 

degree into groups. 

2. Renumber the vertices according to the descending order of vertex degrees. 

3. Permute the vertices of the same degree to get a new labeling of the graph.Similar vertices, if any, can be 

arranged in a subgroup to further reduce the number of permutations. 

4. For each permutation, calculate the decimal number of the binary string obtained by concatenating, row-by-

row, the upper-right triangular elements of the corresponding adjacency matrix. 

5. The maximum number obtained from all possible permutations is defined as the degree code. 

 For example, the degrees of vertices 1 through 6 of the graph shown in Figure 8(b) are 3, 2, 2, 3, 2, and 

2, respectively. Since there are two vertices of degree 3 and four vertices of degree 2, the vertices are divided 

into two groups: (1, 4) and (2, 3, 5, 6).As a first attempt, we relabel the graph as shown in Figure 18(a) where 

integers 1 and 2 are assigned to the two vertices of degree 3. Under the new labeling, the two groups consist of 

(1, 2) and (3, 4, 5, 6). We notice that vertices 1 and 2 are similar. Hence, there is no need to permute these two 

vertices. Similarly, there is no need to permute vertices 5 and 6. Following the above procedure, it can be shown 

that among all possible permutations, the permutation shown in Figure 18(b) produces a maximum number. The 

adjacency matrix is 

 

 
Therefore, the binary string is 011101101000001, which is equal to a degree code of 15169. We note 

that the degree code is smaller than the MAX code, because permutations of the links for the degree code are 

confined within each group of vertices of the same degree. 

Finally, we note that the degree codes for the graphs shown in Figures 15(a) and Figures 15(b) are 

28055807549442 and 28055872017416, respectively. Although the two graphs share a common characteristic 

polynomial, their degree codes are unequivocally different. 

 

XII. ILLUSTRATIVE EXAMPLES 
XII.2 Example 1: Group of Automorphisms  of  Stephenson Chain Consider the Stephenson chain shown in 

Figure 8(a), where the six links are labeled from 1 to 6. The corresponding graph is shown in Figure 8(b). Let 

this labeling of the graph be the identity permutation, a1 = (1)(2)(3)(4)(5)(6). Figures 8(c) through e show three 

permutations of the labeling that can be denoted as a2 =(1)(2)(3)(4)(56), a3 =(14)(23)(5)(6), and a4 

=(14)(23)(56), respectively. In the following we show that the above four labeled graphs form a group of 

automorphisms. 

Following the definition of group operation, we can construct a multiplication table: 
 a1   a2  a3  a4  

a1  a1   a2  a3  a4  

a2   a2  a1   a4  a3  

a3  a3   a4  a1   a2  

a4  a4  a3   a2  a1  

 

We conclude that every product is an element of the group; the associative law holds; a1 is the identity 

element; and every element is its own inverse. Therefore,a1, a2, a3, and a4 form a group of automorphisms. 

Two vertices of a graph are said to be similar if they are contained in the same cycle of a permutation 

of a vertex-induced group of auto orphisms. In the above example, vertices 1 and 4 are similar. Vertices 5 and 6, 

and 2 and 3 are also similar. Similar vertices have the same vertex degrees and their adjacent vertices also have 

the same vertex degrees. In other words, similar vertices possess the same attributes. Automorphic graphs are by 
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definition isomorphic. Analogously, two edges of a graph are said to be similar it they are contained in the same 

cycle of a permutation of an edge-induced group of automorphisms. 

 

XIII. CONCLUSIONS 
 The basic concept of graph theory is essential for structural analysis and synthesis of mechanisms 

kinematic chains. The topological structure of a kinematic chain can be represented by kinematic graph easily 

with the help of graph theory. The Grubler equation for determination of dof does not consider the concept of 

redundant dof. Although, the redundant dof has no role in torque transfer from input to output link but the 

presion and accuracy of design depends upon it (see Table 1). There are many mechanisms (over-constrained 

mechanisms) those do not obey Grubler criterion. We can determine the dof of a mechanism kinematic chain 

using loop mobility criterion  also.The light also has been thrown on the partition of binary links. Several 

methods of identification of structural isomorphism among mechanisms kinematic chains like identification by- 

classification, characteristic polynomials, optimum code and degree code has been studied. these structural 

characteristics  are extremely useful for the development of  computer algorithms for systematic enumeration of 

mechanisms. It is suggested that a designer should use the concept of contracted graphs to determine the 

structural isomorphism as it is a reliable, easy to compute  method. The study is extremely helpful for the U.G. 

/P.G. students, research scholars and designers in their early age of learning at the conceptual stage of design. 
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