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Abstract: In this paper, a numerical method is proposed to solving a reaction-diffusion system. The systems 

describe the solid state reaction mechanism of all the reaction components at the preparatory stage of yttrium 

aluminum garnet (YAG) in one dimension. Kansa’s method and forward Euler method are employed to discrete 

the spatial variable and time respectively. 
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I. INTRODUCTION 
In this paper, we employ the Kansa’s method to solve the nonlinear partial differential equation system 

defined on the space x ∈ I ⊂ R1 as following. 
∂c1

∂t
= D1

∂2c1

∂x2 − 3κc1c2   (1) 

∂c2

∂t
= D2

∂2c2

∂x2 − 5κc1c2   (2) 

∂c3

∂t
= D3

∂2c3

∂x2 + 2κc1c2   (3) 

with initial conditions ci x, 0 = ci
0(x) , x ∈ I = (a, b)  and with zero Neumann boundary conditions on the 

boundary x = a and x = b, that is,  
∂ci

∂x
 

x=a  x=b
= 0, i = 1,2,3,when t > 0. 

The mathematical model above is a reaction-diffusion system, which describes the solid state reaction 

mechanism of all the reaction components at the preparatory stage of yttrium aluminium garnet (YAG ). Where 

ci = ci(x,t) (i=1,2,3) are the concentrations of the i-th reactant respectively, i.e., Al2O3, Y2O3 and Y3Al5O12  in 

the reaction 

3Al2O3+5Y2O3 →2Y3Al5O12 , 

of the synthesis at a point x ∈  a, b  at time t. D are the diffusion coefficients,  that is, we  

consider all the diffusion coefficients coincide. This assumption is general when this sizes of molecules are 

nearly the same. For details, we refer the references [1–7]. 

It is well known that the system (1)-(3) in common three-dimensional case is complicated and so it is 

difficult to implement the numerical modeling. In [2], the authors carried out the solution of the system (1)-(3) 

numerically by using finite difference techniques in one-dimensional case and in two-dimensional case. 

Sysmmetric implicit scheme and alternating direction scheme are employed in the former case and in the latter 

case respectively. Both schemes were solved using stream sweeping method [8]. However, to guarantee the 

convergence of the method of finite difference, it is necessary that the Courant-Friedrichs-Lewy (CFL) 

condition, which says that the  

time step should be less than a certain time in many explicit time-marching computer simulations,  must be 

satisfied[9]. 
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In this paper, a meshless method is employed to compute the concentrations of the reactant of Al2O3, Y2O3 and 

Y3Al5O12  in the reaction 

3Al2O3+5Y2O3 →2Y3Al5O12 . 

Generally, numerical methods, such as the finite element method (FEM), finite differences (FD) and 

finite volumes (FV), transform a partial differential equation over continuum into a finite set of algebra 

equations. In order to accomplish this tast, it is needed to discretize the domain into a grid, mesh or set of points 

with a fixed connection among them. However, the generation of a well-behaved mesh is not a trivial question 

except in very regular geometries. To compensate the difficulties in traditional mesh-based numerical methods, 

meshless methods are emerged. Moreover, meshless methods are very fit for solving the problems in three 

dimension space or when the domain is complicated, because there are no fixed connectivities among the nodes. 
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Meshless methods have gained much attention in recent years, not only in the mathematics but also in the 

engineering community. Much of the work concerning meshless approximation methods is the interdisciplinary 

between mathematics and engineering. Many traditional numerical methods can either not handle such problems 

at all, or are limited to very special situations. Meshless method is often better suited to cope with the changes in 

the geometry of the domain of interest than classical discretization techniques such as finite difference, finite 

elements or finite volumes. Another obvious advantage of meshless discretizations is their independence from a 

mesh. Mesh generation is still the most time consuming part of any mesh-based numerical simulation. Since 

meshless discretization techniques are based only on a set of independent points, these costs of mesh generation 

are eliminated. Meshless approximation methods can be seen to provide a new generation of numerical tools. 

There are many kind of meshless method, here we make a brief introduction of Kansa’s method, for more 

details, we refer to the references [10]. 

A function Φ: Rs → R is called radial provided there exists an univariate function ϕ:  0, +∞ → R such that  

Φ x = φ r , where r =  x . 

 .  usually is the Euclidean norm on Rs . It is obvious that for a radial function Φ，Φ x1 = Φ(x2) holds for all 

 x1 =  x2  (x1,x2 ∈ Rs). In standard Gaussian radial basis function (RBFs) approximant,  the approximate 

form of function  is written as 

c x ≈  αiϕ( x − xi 
N
i=1 ), x ∈ V.    (4) 

where  αi(i = 1,2, … , N) ∈ R are the unknown coefficients to be determined. 

 αiϕ( x − xi 
N
i=1 ) = c xk , k = 1,2, … , N.   (5) 

It is to be noted that there is a large class of RBF  available and one have to choose appropriate one according 

to his need. The most studied RBF including the multiquadric (MQ) ϕ r =  r2 + c2 , inverse MQ ϕ r =

(r2 + c2)−s , thin plate splines ϕ r = r2log⁡(r)and Gaussian exp⁡[−  
r

c
 

2

]. For more details about RBF, we 

refer the famous review of 29 interpolation method over scattered data [11]. 

In early 1990s, Kansa made the first attempt to extent RBF interpolation with multiquadrics to the solution of 

PDEs in the strong form collocation formulation [12, 13]. The method, named the Kansa’s method, is a domain 

type numerical technique in the sense that the problem is discretized not only on the boundary to satisfy 

boundary conditions but also inside domain to satisfy the governing equation. 

 

II. NUMERICAL METHOD FOR SOLVING THE PROBLEM 
To solve the systems (1)-(3) with the given initial and boundary conditions when I ⊂ R1 ,we make 

assumption that all particles are of the same shape of cube shape and its volume is small enough. These are the 

same as in the papers [2, 3] and readers can find more details in them. 

In light of Kansa’s method, we write the concentrations cl , (l = 1,2,3) as 

cl x, t =  αi
l(t)ϕ(x − xi

N
i=1 ).   (6) 

Here, the set  xi , i = 1,2,3, … , N  is consisted by Halton points [14] in I and is chosen as the central set. x ∈
I  (a, b) are known as the test points. 

For simplicity, we introduce some other notations 

ϕi =  ϕ( x − xi ）， 

ϕik
=   ϕ( x − xi  x=xk

, 

ϕi
(1)

=
∂ ϕ( x−xi ）

∂x
, 

ϕik
(1)

=  ∂ ϕ( x−xi ）

∂x
 

x=xk

, 

ϕi
(2)

=
 ∂2ϕ( x−xi ）

∂x2 , 

ϕik
(2)

=  ∂
2  ϕ( x−xi ）

∂x2  
x=xk

, 

αi
l,m = αi

l(x,tm ), 
ωτ= tm : tm = mτ, m = 0,1, … , M ,Mτ = T. 

To solve the non-linear system (3), we propose an alternative iteration algorithm. The scheme is given as 
cl  x,tm +1 −cl (x,tm )

τ
= D  αi

l,m+1N
i=1 ϕi

(2)
+ Dlκ  αi

1,mN
i=1 ϕi  αi

2,mN
i=1 ϕi, 

or equivalently, 

 αi
l,m+1ϕi = τ[DN

i=1  αi
l ,mN

i=1 ϕi
(2)

+ Dlκ  αi
1,mN

i=1 ϕi ( αi
2,mN

i=1 ϕi)]+ αi
l,mϕi

N
i=1 . 

Where Dl  equals to−3,−5,2 whenl = 1,2,3, respectively. In the form of system, it can be written as follows, 
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 αi
1,m+1ϕi = τ[D

N

i=1

 αi
1,m

N

i=1

ϕi
(2)

− 3κ   αi
1,m

N

i=1

ϕi ( αi
2,m

N

i=1

ϕi)] +  αi
1,mϕi

N

i=1

 αi
2,m+1ϕi = τ[D

N

i=1

 αi
2,m

N

i=1

ϕi
(2)

− 5κ   αi
1,m

N

i=1

ϕi ( αi
2,m

N

i=1

ϕi)] +  αi
2,mϕi

N

i=1

 αi
3,m+1ϕi = τ[D

N

i=1

 αi
,m

N

i=1

ϕi
 2 

+ 2κ   αi
1,m

N

i=1

ϕi ( αi
2,m

N

i=1

ϕi)] +  αi
3,mϕi

N

i=1

  

                                                                      (7) 

When considering the boundary conditions, we denote 

ϕi
 1  a =

∂ϕ( a − xi )

∂x
 

ϕi
 1  b =

∂ϕ( b − xi )

∂x
 

Then we can obtain the following linear systems. 

AlXl = Fl ,   (8) 

where Al ∈ R N+2 ×(N+2)  with its entry Aki
l = ϕik  when k = 1,2, … , N ,Aki

l = ϕi
 1  a  and  Aki

l = ϕi
 1  b  when 

k = N + 1 and k = N + 2 respectively. 

Fk
l = τ[D  αi

l,mN
i=1   ϕjk

 2 3
j=1  + Dlκ  αi

1,mN
i=1 ϕik ( αi

2,mN
i=1 ϕik )]+  αi

l ,mϕik
N
i=1  

when k = 1,2, … , N and Fl = 0 k = N + 1 and k = N + 2. 

Acknowlege  This work is partially supported by the Natural Fund of JiangXi Province (No20122BAB204017) and the 

Youth Fund of Department of Education of JiangXi Province (N0.GJJ13486). The authors would like to thank Vice Prof. 

DaMing Yuan and JianJie YU (NanChang Hangkong University, P. R. China) for their helpful discussions. 

 *Corresponding  Author  E_mail: clzclz1011@126.com 

 

REFERENCES 
[1] B.N. Arzamasov, V.N. Simonov, Circulation method for depositing diffusion coatings. Met. Sci. Heat Treat. 52(9-10), 403-407 

(2011) 

[2] M. Mackeviˇcius, F. Ivanauskas, A. Kareiva, D. Jasaitis, A closer look at the computer modeling and sintering optimization in the 
preparation of YAG, J. Math. Chem., 50(8), 2291-2302 (2012) 

[3] F. Ivanauskas, A. Kareiva, B. Lapcun, On the modelling of solid state reactions Synthesis of YAG, J. Math. Chem., 37(4), 365-376 
(2005) 

[4] F. Ivanauskas, A. Kareiva, B. Lapcun, Diffusion and reaction rates of the yttrium aluminum garnet synthesis using different 

techniques. J. Math. Chem. 42(2), 191C199 (2007) 
[5] F. Ivanauskas, A. Kareiva, B. Lapcun, Computational modeling of the YAG synthesis. J. Math. Chem. 46(2), 427C442 (2009) 

[6] J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 

2, 84-90 (1960) 
[7] T. T. Wong, W. S. Liu, P. A. Heng, Sampling with Hammersley and Halton points, J. Graphics Tools, 2, 9-24 (1997) 

[8] A.A. Samarskij, Theory of Finite Difference Schemes. Nauka, Moscow(1983). 

[9] R. Courant, K. Friedrichs and H. Lewy, On the partial difference equations of mathematical physics, V+76, New York Universty,  
New York (1956) 

[10] G. R. Liu, Mesh Free Method-Moving beyond the finite element method. CRC Press, Boca Raton(2003). 

[11] R. Franke, Scattered data interpolation: tests of some methods, Math. Comput., 38,181-200 (1982). 
[12] E.J. Kansa, Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface 

approximations and partial derivative estimates, Comput. Math. Appls., 19, 127-145 (1990) 

[13] E.J. Kansa, Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics. II. Surface 

approximations and partial derivative estimates, Comput. Math. Appls., 19, 147-161 (1990) 

[14] G. E. Fasshauer, Meshfree approximation methods with Matlab. World Scientific Press, Hackensack (2007). 


