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Abstract: This paper presents Robust reversible watermarking methods are popular in multimedia for 

protecting copyright, while preserving intactness of host images and providing robustness against unintentional 

attacks. However, conventional RRW methods are not readily applicable in practice.  That is mainly because 

they fail to offer satisfactory reversibility on large-scale image datasets. They have limited robustness in 

extracting watermarks from the watermarked images destroyed by different unintentional attack. Some of them 

suffer from extremely poor invisibility for watermarked images. Therefore, it is necessary to have a framework 

to address these three problems, and further improve its performance. So a novel pragmatic framework is 

proposed that is wavelet-domain statistical quantity histogram shifting and clustering (WSQH-SC). Compared 

with conventional methods, WSQH-SC ingeniously constructs new watermark embedding and extraction 

procedures by histogram shifting and clustering, which are important for improving robustness and reducing 

run-time complexity. Additionally, WSQH-SC includes the property-inspired pixel adjustment to effectively 

handle overflow and underflow of pixels. This results in satisfactory reversibility and invisibility. Furthermore, 

to increase its practical applicability, WSQH-SC designs an enhanced pixel-wise masking to balance robustness 

and invisibility. So it perform extensive experiments over natural, medical, and synthetic aperture radar images 

to show the effectiveness of WSQH-SC by comparing with the histogram rotation-based and histogram 

distribution constrained methods. 
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I. Introduction 
REVERSIBLE WATERMARKING (RW) methods [1] are used to embed watermarks [2], e.g., secret 

information [3], into digital media while preserving high intactness and good fidelity of host media. It plays an 

important role in protecting copyright and content of digital media for sensitive applications, e.g., medical and 

military images. Although researchers proposed some RW methods for various media, e.g., images [4], [5], 

audios [6], videos [7], and 3-Dmeshes [8], they assume the transmission channel is lossless. The robust RW 

(RRW) is thus a challenging task. For RRW, the essential objective is to accomplish watermark embedding and 

extraction in both lossless and lossy environment. As a result, RRW is required to not only recover host images 

and watermarks without distortion for the lossless channel, but also resist unintentional attacks and extract as 

many watermarks as possible for the noised channel [9]. 

 

II. Existing Methods 
Recently, a dozen of RRW methods for digital images have been proposed [10]–[13], which can be classified 

into two groups [9]: histogram rotation (HR)-based methods and histogram distribution constrained (HDC) 

methods. The HR-based methods [10], [11] accomplish robust lossless embedding by slightly rotating the 

centroid vectors of two random zones in the non-overlapping blocks. Due to the close correlation of neighboring 

pixels, these methods were reported to be robust against JPEG compression. However, they are sensitive to 

“salt-and-pepper” noise, which leads to poor visual quality of watermarked images, and impedes lossless 

recovery of host images and watermarks. To solve this problem, the HDC methods have been developed in 

spatial and wavelet-domains [12], [13], which divide image blocks into different types and embed the modulated 

watermarks for each type based on histogram distribution. Unfortunately, these methods suffer from unstable 

reversibility and robustness according to [9]. In summary, the above analysis shows that both kinds of RRW 

methods are not readily applicable in practice. 

 

III. Proposed Framework 
In this section, we introduce a new RRW framework, i.e., WSQH-SC, which accomplishes the robust lossless 

embedding task by incorporating the merits of SQH shifting, k-means clustering and EPWM. WSQH-SC 

comprises two processes: watermark embedding and extraction. In view of their similarity, Fig. 1 only shows 

the diagram of the embedding process in which the three modules are termed: 1) PIPA; 2) SQH construction; 

and 3) EPWM-based embedding, and they are detailed in the following three subsections. To be specific, 
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WSQH-SC first investigates the wavelet sub-band properties in depth and exploits PIPA to preprocess the host 

image, which is of great importance to avoid both overflow and underflow of pixels during the embedding 

process. Afterward, the host image is decomposed by the 5/3 integer wavelet transform (IWT) [30] and the 

blocks of interest in the sub-band C
HL

0
 are selected to generate the SQH with the help of the threshold 

constraint. Finally, watermarks can be embedded into the selected blocks by histogram shifting, wherein EPWM 

is designed to adaptively control watermark strength. After the IWT reconstruction, the watermarked image is 

obtained. 

Fig. 1. Embedding process of the proposed wavelet-domain SQH shifting and clustering framework. 

           (a) PIPA. (b) SQH construction. (c) EPWM based embedding

 

A. PIPA: 

Firstly, PIPA deeply exploits the intrinsic relationship between wavelet coefficient and pixel changes. 

Secondly, by taking the scale and region of wavelet coefficient changes into consideration, PIPA determines the 

adjustment scale and employs the pixel adjustment strategy to preprocess the host images. 

 Multiple Sub-Bands and Multiple Wavelet Coefficients: 

Considering an arbitrary block with the top left corner at (p, q) in C
W

0
 , 1 ≤ p < M, 1 ≤ q < N, we investigate 

the changes of wavelet coefficients and pixels in two special cases, Here, v f
 = 

]0,0,1...0,1,0,1,0,0[
12 xh
, vg  = ]1,2,...,2,1[

32 xw
 and the affected region of pixels is denoted 

by the location of its top left corner. To further illustrate such effects, Fig. 2 shows an example in which the 

block size is 3 × 3, and the wavelet coefficients of two neighboring blocks in C
LL

0
and C

HL

0
 are changed 

simultaneously. 

 
Fig. 2. Example of the effects of changing wavelet coefficients on pixels based on multiple sub-bands and 

multiple wavelet coefficients. 
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With Fig. 2, we can deduce that: 1) the affected pixel regions are nonoverlapped when the wavelet coefficients 

of neighboring blocks are changed at the same time and 2) the pixel changes are monodirectional and the 

maximum change scale equals λ. In this case, we can easily determine the adjustment scale and use the pixel 

adjustment strategy to preprocess host images. In particular, given a t-bit host image I with the size of 2M ×2N, 

the pixel adjustment is performed by  
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where I (i, j ) is the grayscale value of the pixel at (i, j ) in the image I , I(i, j ) is the adjusted one (1 ≤ i ≤ 2M,  1 

≤ j ≤ 2N), and η > λ is the adjustment scale. Thereafter, the preprocessed host image can be reliably used for 

watermark embedding in the next subsections. Because the pixels are changed into a reliable range before 

embedding, i.e.[η, 2t − 1 – η], PIPA can successfully avoid both overflow and underflow of pixels [15]. It is also 

worth emphasizing that the proposed WSQH-SC is nonblind to some extent because the locations of the 

changed pixels need to be saved as a part of side information and transmitted to the receiver side in order to 

recover the original grayscale values of pixels. 

 

B. SQH Construction 

In this subsection, we consider the SQH construction task with a threshold constraint. Inspired by 

characteristics of the wavelet coefficients [13], we focus on the mean of wavelet coefficients (MWC) histogram 

by taking the following two properties into account: 1) it is designed in high-pass sub-bands of wavelet 

decomposition, to which HVS is less sensitive, leading to high invisibility of watermarked images and 2) it has 

almost a zero-mean and Laplacian-like distribution based on the experimental study of wavelet high-pass sub-

bands from 300 test images illustrated in Section V, which is stable for different images. In particular, an MWC 

histogram is generated based on the following procedure. Considering a given host image I , we first decompose 

I using 5/3 IWT to obtain the sub-band C
HL

0
 , and then divide C

HL

0
 into n nonoverlapping blocks. 

Let S = [ 1S , . . . , kS , . . . , nS  ] be the MWCs in the sub-band, then the MWC of the 
thk kth block, kS  is 

defined as 
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where P
ji

k

),(
 represents the wavelet coefficient at (i, j ) in the kth block. To construct the MWC histogram, our 

concern is the possibility of utilizing the blocks of interest in a sub-band, 

which will be helpful for simplifying the embedding process.In view of the histogram distribution of MWC, 

only the peak and its neighbors in the histogram are mostly useful for the 

embedding task. Therefore, a threshold constraint is applied to the blocks to retain those of interest, each of 

which satisfies the following condition: 

d (x, kS  ) ≤ δ, 1 ≤ k ≤ n      (3) 

where d (·) computes the Euclidean distance of two elements, x ∈ {xl , xr } represents the aforementioned two 

peak points, and δ is a predefined constant for threshold control. When 

δ ≥ max {d ( lx  , min (S)) , d ( rx  , max (S))}, all of the blocks will be retained for embedding, which is a 

special case of this constraint. Moreover, with the help of the threshold constraint, the capacity can be controlled 

flexibly. 

 

C. EPWM-Based Embedding : 
It has been well acknowledged that a balance between invisibility and robustness is important for 

robust watermarking methods. Although many efforts have been made to design lossless embedding models, 

little progress has been made in this trade-off. Therefore, we develop EPWM to tackle this problem by utilizing 

the JND thresholds of wavelet coefficients to optimize watermark strength. In view of the disadvantages of 

PWM discussed in Section II, EPWM focuses on improving the local sensitivity of images to noise by mainly 

estimating brightness and texture sensitivities in a more precise way. Motivated by the benefits of luminance 

masking [34], we first redefine the brightness sensitivity in (5) by calculating  the luminance masking of the 

low-pass sub-band at resolution level ρ, denoted as 
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represent the visibility threshold and spatial masking functions, respectively, in which d1 (·) and d2 (·) are the 

background luminance dependent functions, and lρ b (·) and lρm (·) mean  

the average background luminance and maximum weighted average of luminance differences. Then, the texture 

sensitivity is evaluated based on [35] by 
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Fig. 3: Example of WMC histogram in a watermarked image. 

 

Algorithm1: Proposed Classification Process 

 

Input: The MWCs 
wS  = [

wS1 , . . . , 
w

mS ],and number of clusters  . 

Output:The set of clusters g =[ 1g , . . . , g ] 

 

1.Inittialize the clusters ,,..., )1()1(

1 ff iteration time  ; 

2. Do 

3. For k=1 to m do 

4 Assign the kth 
k

wS  to one of the clusters according to the distance between it and cluster centers. 

k

wS ∈ 𝑔𝑗 ,if d(
k
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where ϒ 3 ρ is the mean of the approximation sub-image ϒ3 ρ . Because both (13) and (16) take the difference 

between resolution levels into account, we can replace (6) with 

 (8)  
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Finally, the new JND threshold can be obtained by 
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in which 0 < ϒ ≤ 1 is a tuning parameter corresponding to the weight of brightness sensitivity. In view of space 

limitation, refer to [15] and [16] for the definitions of d1 (·), d2 (·), lρ b (·), 

lρm (·), and ϒ3 ρ . With (8), we use the obtained JND thresholds to control watermark strength during the 

embedding process. To be specific, given the MWC of the kth block of interest, i.e., 

Sk, 1 ≤ k ≤ m, the watermark embedding is given by  

 bS kk k

wS   (10) 

 

Here 
k

wS  is the obtained MWC after the kth watermark bit kb  ∈ {0, 1} is embedded, β is a factor defined as 

 

𝛽 = (𝑆𝑘 -𝑆∗)/abs(𝑆𝑘 -𝑆∗)      (11) 

 

𝑆∗ = arg min 𝑑( 𝑆𝑘 ,x) 

           x∈ 𝑥𝑙 , 𝑥𝑟) 
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𝛼

𝑀 𝑥  𝑁
   𝐽𝑁𝐷𝜌

𝑤  (𝑖, 𝑗)𝑁
𝑗=1

𝑀
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     (12) 

 

represents the watermark strength, where α is a global parameter and M × N is the sub-band size. Because the 

novel embedding model shown in (10) expands the additive spread  

spectrum [36] to a reversible embedding model, we term it a generalized additive spread spectrum. By applying 

(10) to the blocks of interest in the sub-band, watermarks can be 

embedded into the wavelet coefficients. Thereafter, the IWT reconstruction is performed to obtain the 

watermarked image. 

 

D. Extraction Based on k-Means Clustering 

If watermarked images are transmitted through an ideal channel, we can directly adopt the inverse 

operation of (10) to recover host images and watermarks. However, in the real environment, degradation may be 

imposed on watermarked images due to unintentional attacks, e.g., lossy compression and random noise. 

Therefore, it is essential to find an effective watermark extraction algorithm so that it can resist unintentional 

attacks in the lossy environment. Based on the aforementioned embedding model in (10), the MWC histogram 

of  watermarked images are divided into three parts shown in Fig. 3, in which the center part corresponds to 

watermark bit “0” and others to bit “1.” To extract the embedded watermarks,  the key issue is to partition these 

parts dynamically. In the lossy environment, this is very difficult because the histogram distribution of MWC is 

destroyed by unintentional attacks, as reported in [14].   In this paper, by investigating the effects of 

unintentional attacks on histogram, we treat the partition as a clustering problem with a certain number of 

clusters and adopt the k-means clustering algorithm [18], [19] to tackle this problem for simplicity.Similar to the 

embedding process, we first decompose the watermarked image with 5/3 IWT and construct the MWC 

histogram by calculating the MWCs  of blocks of interest in the sub-band C
HL

0
 . Let 

wS  = [
wS1 , . . . , 

w

mS ] 

be the obtained MWCs, F = [ 1f , . . . , f ] be the cluster centers, and g =[ 1g , . . . , g ] be the set of clusters, 

wherein μ is the number of clusters. The above classification process is summarized in Table V. Particularly, the 

initial cluster centers are given by considering the features of the embedding process, e.g.,F = {τ min (Sw) , 0, τ 

max (Sw)}  for μ = 3, to improve the efficiency of classification. Based on the results of classification the 

embedded watermarks can be extracted by 


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
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


        III Classor  I Class S if              ,1

(13)                    II Class S if             ,0

w

k

w

kr

kb  

Algorithm-2: Embeddding Procedure of the Proposed Framework  

 

Input:  A t-bit host image I with the size of 2Mx 2N ,a watermark sequence b =[𝑏1,…,𝑏𝑚 ] and block size hxw. 

 Output:The watermarked image 𝐼𝑤  

1. Apply PIPA to host image I to ontain the adjusted image 𝐼!, and record the locations of the pixels changed 

by PIPA: 

2. Decompose 𝐼!using 5/3 IWT and devide  

The sub-band 𝐶0
𝐻𝐿  into n nonoverlapping blocks with size of h x w; 

3. Compute the MWCs of all the blocks with (2) and obtain S = [ 1S , . . . , kS , . . . , nS  ]; 

4. Retain blocks of interest with the threshold constraint in (3) and construct SQH 
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5. Perform EPWM to compute the watermark strength 

 =
𝛼

𝑀 𝑥 𝑁
   𝐽𝑁𝐷𝜌

𝑤  (𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

 

6. For k=1 to m do 

7. Embed the kth watermark with  bS kk k

wS  

8. End for 

9. Recondtruct the watermark image 𝐼𝑤  with inverse 5/3 IWT 

Algorithm-3: Extraction Procedure of the Proposed Framework 

Input:  A watermarked image I
W

with the size  of 2Mx 2N , block size h x w , watermark strength   and the 

locations of the pixel changed by PIPA. 

 Output:The recovered watermarke sequence 𝑏𝑟 image 𝐼𝑟 . 

1. Decompose 𝐼𝑤using 5/3 IWT and devide 

The sub-band 𝐶0
𝐻𝐿  into n nonoverlapping blocks with size of h x w; 

2. Compute the MWCs of all the blocks of interest with with (2) and obtain 
wS  = [

wS1 , . . . , 
w

mS ]; 

3. For k=1 to m do 

4. Extract the embedded watermarks 


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
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

        III Classor  I Class S if              ,1

(13)       3for                 II Class S if             ,0

w

k

w

k 
r

kb  

5 Recover the MWCs with 
r

k

w

k bS r

kS  

6 End for 

7 Perform inverse IWT follwed by PIPA to obtain the recovered image 𝐼𝑟     

8 Return the Recovered watermark 𝑏𝑟  andimage 𝐼𝑟  

For μ = 3, in which 
k

wS  is the kth MWC, brk is the extracted watermark bit, and Classes I–III denote the 

obtained set of clusters. Thereafter, we recover the MWCs with 
r

k

w

k bS r

kS , which are identical to the 

original ones in the lossless environment. After the IWT reconstruction, the inverse operation of (1) is applied to 

the pixels changed by PIPA in the embedding process to recover host images. As 

mentioned earlier, the side information including the block size, watermark strength, and loations of the pixels 

changed by PIPA, should be transmitted to the receiver side, which is important for the recovery of watermarks 

and host images, and also leads to nonblindness of the proposed framework to some extent. In summary, the 

embedding and extraction processes of the proposed framework are depicted in the discussion. 

 

IV. Simulation Results 
In our experiments, the robustness, reversibility, invisibility, capacity, and run-time complexity are used to 

evaluate the performance. In particular, the pure capacity is calculated in bits/pixel (b/ps) and the invisibility is 

measured by PSNR, defined as 
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
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in which I (i, j ) and I
W

 (i, j ) denote the grayscale values of the pixels at (i, j ) in the host and watermarked 

images. 

 

TABLE I:  Simulation values of PSNR, MSE& Ans 

Parameter Value 

PSNR 99.89 

MSE 0.019 

Ans 0.998 
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Fig 5 a,b,c,d,e: a-Original image ,b- IWT 5/3 decomposed image, c- watermarked image, d-extracted 

watermark, e- Extracted image . 
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Fig 6 a,b: PSNR AND MSE VALUES Vr block size 

 

 
Fig 7 a,b:  PSNR & MSE Vr Tuning parameter 
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Fig 8 a,b: MSE and PSNR values Vr Threshold 

 

V. Conclusion 

In this paper, we have developed a novel yet pragmatic framework for RRW. It includes carefully designed 

PIPA,SQH shifting and clustering, and EPWM, each of which handles a specific problem in RRW. PIPA 

preprocesses host images by adjusting the pixels into a reliable range for satisfactory reversibility. SQH shifting 

and clustering constructs new watermark embedding and extraction processes for good Robustness and low run-

time complexity. EPWM precisely estimates the local sensitivity of HVS and adaptively optimizes the 

watermark strength for a trade-off between robustness and invisibility. Below are the advantages of this 

framework: 1) obtains comprehensive performance in terms of reversibility, robustness, invisibility, capacity 

and run-time complexity; 2) is widely applicable to different kinds of images; and 3) is readily applicable in 

practice. In future, we will combine the proposed framework with the local feature to further improve 

robustness. In addition, it is valuable to integrate the merits of sparse representation and probabilistic graphical 

model into the designing of image watermarking.  
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