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Abstract:- We investigate the coherent phononic transport at the inhomogeneous boundary of an extended 

atomic Slab well in crystalline solid surfaces. The surfaces are considered as a semi-infinite slab of three 

coupled atomic layers, and the well as a double atomic chain. This simplified geometric configuration models a 

slab atomic well in a surface crystalline. The breakdown of translation symmetry in the direction normal to the 

surface and perpendicular to the extended nanowell gives rise to localized vibrational modes in its 

neighbourhood. The matching method is used in this work; it may be applied to analyze the scattering 

dynamical phenomenon for surface inhomogeneities. Characteristic transmission and reflection modes, derived 

from as elements of a Landauer-Büttiker type scattering matrix and phononic conductance are calculated for this 

system. The evolutions of these spectra are presented as a function of the variation of the elastic parameters of 

the system. This illustrates the variation of the spectra for the bulk and at the inhomogeneous domain of the 

surface atomic well. The analysis of the spectra of the total transmission demonstrates the fluctuations, related to 

Fano resonances, due to the coherent coupling between travelling phonons and the localized vibration modes in 

the slab atomic well domain. All calculated properties are the signature   of surface Slab atomic well. 
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I. INTRODUCTION 

 The scattering and localization phenomenon by structural defects are a fundamental interest problem of 

solid state physics. Inhomogeneities break the translational symmetry of a physical system and lead to several 

effects, such as the scattering, resonant and localized states [1]. The many different physical problems, such as 

optic [2], acoustic [3], electronic [4] and magnetic are affected  by  the presence  of the reticular inhomogeneity 

[5]. In all cases, the defects generate the localized energy  at   it  behavior  and that vanish on either side of it. 

          In the present paper, we investigate the transmission, reflection modes and the phononic conductance at 

the extended slab atomic well in crystallographic multi channel waveguides, in the harmonic approximation. 

The motivation of the present work is related to growing interest of elastic properties of nanostructures in 

crystalline surfaces.   We note that  the usual approach  cannot be applied,, therefore a adapted  formalism is 

necessary  then  matching method which is  the theoretical  approach and elegant formulation for study the 

vibrational  properties [6-10] as well as the scattering  in disordered systems.  This is used to study the 

transmission, reflection modes and phononic conductance at the slab atomic well crystalline surface. In section 2 

we present complete description of the model and the scattering properties at extended nanowell.  The 

transmission, reflection modes and the conductance of the system and the principal numerical results are 

presented in section 3, In  section 4  we present the  general conclusions of the work. 

 

 

II. THE SCATTERING PROBLEM 
 We consider an extended surface slab atomic well. This simplified model consists of three semi-infinite 

slabs, each made up of three coupled atomic layers. The joint is a two extended atomic chains at the boundary 

between the two surfaces. The three dimensional substrate is neglected in this simplified description and 

produced the confinement of   vibration along the z axis. Consider k1 and k2 to denote the elastic force constants 

between nearest and next nearest atomic neighbors, respectively, in the semi-infinite slab system, region far 

from the well. Consider, furthermore, that k1d, k2d are the elastic constant parameters at the slab nanowell 

domain. 

r = k2 /kl      

r1d = k1d /k1            (1)                                                                                                                                                                                                                                                              

r2d = k2d/ k1       
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The general equation of motion for an atom at any lattice site in the system far from the well region is 

expressed, in the harmonic approximation by the dynamic matrix of the type: 

 

²I – D (y,, r) V   = 0         (2)

                                      

 I is the unity matrix, D the dynamic matrix characteristic of the perfect domain and V   the 

corresponding eigenvector in the surface region far from the atomic well. y = aqy are the dimensionless 

reciprocal lattice wave vectors along the y-direction, parallel to the symmetry axis of the extended atomic well; 

a is the inter-atomic distance in the structure. The quantity  is the generic phase factor inside the semi-infinite 

surfaces along the x-direction normal to the extended atomic well. Further, the dimensionless frequency  is 

given by ² = ω²
 
/ω0², where ω0 = (kl /m)

1/
² is a characteristic frequency, m denotes the atomic mass. In other 

words, for a given, we need all the solutions (i), including the i=1 propagating solutions, and the 

evanescent solutions with i< 1.                 The Cartesian components  of the displacement field U(n, n’) for 

an outside spin bordering the defect domain [0, 2], may be expressed using the matching approach. For a site 

inside the wave guide to the left of the defect, the displacement field U(n, n’) can be expressed as the sum of 

the incident wave and a superposition of the eigenmodes of the perfect wave guide reflected at the same 

frequency [11-24]:U(n,n’)=uii
n
+jj

-n
Rijuj ,   with n<0      

      (3a)  

where the vectors ui denote the eigenvectors of the dynamic matrix for the perfect wave-guide at the frequency 

. Rij are the reflection coefficient that describe the scattering of a given incident wave i into the eigenmodes i = 

1, 2, 3, 4, 5, 6, 7, 8, 9. For a site inside the wave guide to the right of the defect, the displacement field U
+
(n, n’) 

can be expressed by an appropriate superposition of the eigenmodes of the perfect wave guide transmitted at the 

same frequency 

U
+
(n,n’) = jj

 n
Tijuj,    with   n>2                (3b) 

               The scattering behaviour is usually described in terms of the scattering matrix, which elements are 

given by the relative reflection and transmission probabilities rij and tij at the scattering frequency , [25,26] 

These are given by 

 

rij = (Vgi / Vgi) Rij²      and        tij = (Vgj / Vgi) Tij²       (4)      

 Where in order to obtain unitarity of the scattering matrix, the scattered waves have to be normalised 

with respect to their group velocity. Vgs is the group velocity of the eigenmode i, put equal to zero for 

evanescent modes. Rij and Tij are respectively the reflection and transmission coefficients that describe the 

scattering of a given incident wave i into the eigenmodes i = 1, 2, 3, 4, 5, 6, 7, 8, 9. The transmission and 

reflection coefficients related to vibrational mode 1 and 9 are little modified with the variation of parameters of 

the system at the neighbourhood of the defect. They spread respectively on band of frequencies summarised  in 

table 1:  

              

                             Coefficient 

transmission 

Coefficient 

Reflection    

Mode1 0 <  < 1.85    

 2.2 <  < 2.25 

0 <  < 1.85   

  2.2 <  < 2.25 

Mode2 0 <  < 1.95 0 <  < 1.95, 

Mode3 0 <  < 1 0 <  < 1. 

Mode4 0.5 <  < 2 0.5 <  < 2 

Mode5 0.5 <  < 2.25 0.5 <  < 2.25 

Mode6 1.8 <  < 2 1.8 <  < 2. 

Mode7 1.8 <  < 2.15    :1.8 <  < 2.15    

Mode8 1.85 <  < 2.95 1.85 <  < 2.95 

Mode 9 1.9 <  < 1.95 

2.2 <  < 2.25 

1.9 <  < 1.95 

2.2 <  < 2.25 

 

Table 1: Coefficient of transmission and reflection modes  of  the   nanowell. 

 All modes vary in agreement with the variation of band of bulk propagation modes and their group 

velocities. We remark that all modes vanished beyond frequency  superior to 3. 
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We can further define total reflection and transmission probabilities for a given eigenmode at scattering 

frequency  by summing over all the contributions 

 

 
ri() = jrij() and ti() = jtij() 

 

 (6) 

Fig. 1.:The curves of transmission t1, t2, t3, t4, t5 , t6, t7, t8 , t9 (doted-lines) and reflection r1, r2, r3, r4, r5, r6 , r7, r8, 

r9,coefficients (solid-lines) and their sum s1, s2, s3, s4 s5, s6, s7, s8 , s9 (solid lines) for homogeneous parameters: 

r1d=1, r2d = 0.8. 

 

 Furthermore, in order to describe the over all transmission of mesoscopic multichannel systems at a 

given frequency , it is useful to define the conductance of the system (or the domain defect transmittance) 

C(), by summing over all input and output channels[27-29]. 

 

                                                                     C() = ij tij()                                                                   (7) 

                                                                                                                                 

 Where the sum is carried out over all propagating modes at frequency . The transmission probabilities 

ti() per eigenmode i, and the conductance of the system C() are important to calculate because each 

corresponds indeed to an experimentally measurable observable. thermal conductivity  The wave guide 

conductance C() plays an essential role for vibrational and  electrical propriety of the system. 

 
III. NUMERICAL RESULTS 

         We examined the coherent phononic transport in extended slab atomic well  as function the incident 

energy and the parameters of neighbourhood of perturbed domain boundary . Also we consider particular 

possible homogeneous case, hardening and softening of the elastic force constants in the atomic slab nanowell 

region with respect to other regions far from the well . Consider in all cases that r = 0.8, which value 

characterizes realistic physical atomic structures in the bulk and surface regions.  The transmission and 

reflection coefficients and the total conductance spectrum are calculated and presented respectively in Figure 1 

for the homogeneous parameters r1d  = 1, r = 0.8, r2d=  0.8, and Figure 2 for three different cases determining a 

choice of the elastic properties of the atomic nanowell domain:  

softening: r1d  = 0.9, r = 0.8,  r2d =0.7. 

hardening: r1d  = 1.1, r = 0.8,  r2d = 0.9.  
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and homogeneous: r1d  = 1,r = 0.8,  r2d=  0.8. 

          The total elastic-wave conductance of the system C(y, ), is a useful quantity to calculate, as it 

corresponds to an experimentally measurable observable, for example in heat transfer, it induced by sum of the 

propagating modes of the system; it undergoes the influence of the variation of the parameters of the system at 

the neighbourhood of the slab atomic nanowell. It spreads on a beach of frequencies corresponding to 0 <  < 

3.2, the phonon energy band; these curves of conductance varies according to parameters 1 and 2, and present 

peak resonances of different heights and widths, around frequencies  = 0.95, 1.5 and 2.5, what gives it a rough 

aspect. One notes shifts of resonances peaks toward the high frequencies with the increasing parameters 1 and 

2. The conductance spectra always starts with her higher values at low frequencies ( tend to zero), fluctuate 

for the intermediate values of  and decrease with increasing  then becomes zero at the Brillouin zone limit. 

Which the system reflects all the upper frequencies to 3.5 (   3.5) and acts as a   mirror for the elastic-wave, it 

plays the role of a frequential filter passes low. Another general characteristic of the total phonon conductance is 

the systematic displacement of its spectral maxima to higher frequencies with increasing hardening of the elastic 

constants in the nanowell domain. These maxima in the interval  [0, 3.5] correspond to characteristic Fano 

resonances since the vibration states on the nanowell domain are effectively localized at the nanowell domain, 

which interact with the continuum of the incident waveguide modes. 

 

IV. CONCLUSIONS 
 In this work, we have presented a calculation approach of the study of the coherent phononic transport spectra 

of the Slab atomic nanowell which acts as the joint between three sets of semi-infinite atomic multilayer. This 

analysis regarding the scattering properties of nanowell that transmission, reflection  coefficient  and total 

transmission of the system as function of the incident energy  and the   characteristic parameters  of 

nanostructure domain .We note that the conductance of the system is  related to measurable  thermal 

conductivity of  the nanostructure.  This approach can be extend to other    physical properties then the  spin  

wave  dynamic  and   electronic  conductivity. We can also determined  the  heat capacity and 

internal energy  of the disordered system. The spectrum of different properties   are  the signature  of  the nature 

and   crystalline configuration   structural defects and  can be used in  the no destroyed control  to investigate  

the reticular inhomogeneities  in   the   studied  system. 
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