Theoretical Zero Field Splitting Parameters of Mn²⁺ doped SAH Single Crystals

Ram Kripal

EPR laboratory, Department of Physics, University of Allahabad, Allahabad (India)-211002

Abstract

Superposition model (SPM) has been used to evaluate the crystal field parameters (CFPs) of Mn^{2+} doped strontium acetate hemihydrate (SAH) single crystals. Further, employing perturbation and microscopic spin Hamiltonian (SH) theory the zero field splitting parameters (ZFSPs) D and E are determined. Calculated D and E give reasonable agreement with the experimental values. The results show that the Mn^{2+} ion enters the lattice substitutionally at Sr^{2+} site in SAH.

Keywords: A. Inorganic compounds; A. Single Crystal; C. Crystal structure and symmetry; D. Crystal and ligand fields; D. Optical properties; E. Electron paramagnetic resonance. **PACS No. :** 76.30

Date of Submission: 01-12-2022	Date of Acceptance: 10-12-2022

1. INTRODUCTION

The physical and geometrical information contained in crystal field parameters of different ion-host systems can be obtained using superposition model (SPM) [1, 2]. This model has been successfully used for spin Hamiltonian parameters of $3d^5$ ions [3, 4].

There are different mechanisms for the splitting of the ground state of magnetic ions doped in crystals [5-8]. In majority of the cases, the spin-orbit coupling, the low-symmetry field, and the off-diagonal part of free-ion Hamiltonian are taken to be the perturbation terms while cubic field and the diagonal part of free-ion Hamiltonian are considered as unperturbed terms [9].

Metal acetates and formates are found in a number of crystallographic forms and states of

hydration. These have proved to be popular subjects of investigation by solid-state ¹³C NMR [10-17] in order to understand the influence of metal ion, structural type, and packing on shielding. Calcium acetate hemihydrate (CAH), strontium acetate hemihydrate (SAH), and barium acetate monohydrate (BAM) have been studied using both solid-state NMR and single-crystal X-ray diffraction [18].

EPR absorption study of Mn^{2+} (3d⁵ ion) doped strontium acetate hemihydrate, Sr (CH₃COO)₂. $\frac{1}{2}$ H₂O (SAH)

single crystal has been performed at 295K (RT), 77K and 4.2K [19]. For Mn^{2+} ion location in the SAH crystal, both substitutional and interstitial sites may be adopted. It was suggested [19] that Mn^{2+} ion enters the lattice of SAH substitutionally at Sr^{2+} site. In the present study, the zero-field splitting parameters (ZFSPs) D and E are evaluated for the Mn^{2+} ion at substitutional Sr^{2+} site in SAH at RT; employing perturbation equations and crystal field parameters (CFPs) determined from SPM [20]. The values of D and E obtained using SPM are in reasonable agreement with the experimental values [19].

2. CRYSTAL STRUCTURE

The crystal structure of SAH single crystal is triclinic with lattice parameters a = 7.2321 Å, b = 9.9271 Å, c =

10.6431 Å; $\alpha = 83.58^{\circ}$, $\beta = 82.04^{\circ}$, $\gamma = 73.98^{\circ}$; space group P1 and Z = 2 [18]. The oxygen coordination about Sr²⁺ is shown in Fig. 1. The site symmetry around Mn²⁺ions is taken to be orthorhombic, as indicated by EPR study of Mn²⁺: SAH [19].

.)]

3. THEORETICAL INVESTIGATION

The resonance magnetic fields can be obtained using the spin Hamiltonian [21, 22]

$$\mathcal{H} = g\mu_{B}B.S + D\{S_{z}^{2} - \frac{1}{3}S(S+1)\} + E(S_{x}^{2} - S_{y}^{2}) + (\frac{a}{6})[S_{x}^{4} + S_{y}^{4} + S_{z}^{4} - \frac{1}{5}S(S+1)(3S^{2} + 3S-1)] + \frac{F}{180}\{35 S_{z}^{4} - 30 S(S+1)S_{z}^{2} + 25S_{z}^{2} - 6S(S+1) + 3S^{2}(S+1)^{2}\} + \frac{K}{4}[\{7S_{z}^{2} - S(S+1) - 5\}] + S_{z}I_{z} + S_{z}I_{z} + B(S_{x}I_{x} + S_{y}I_{y})]$$
(1)

where g is the isotropic spectroscopic splitting factor, μ_B is the Bohr magneton, **B** is the external magnetic field. D and E are the second-rank axial and rhombic ZFSPs, whereas a, F, and K are the fourth-rank cubic, axial and rhombic ZFSPs, respectively. The last two terms in Eq. (1) give the hyperfine (I = 5/2) interaction. The F and K terms are neglected as their effect is very small [21, 23, 24]. The electronic Zeeman interaction is assumed to be isotropic for 3d⁵ ions [21, 25]. The above two assumptions can slightly affect the value of a [26]. The direction of maximum overall splitting of EPR spectrum is taken as the z axis and that of the minimum as the x axis [27]. The laboratory axes (x, y, z) obtained from EPR spectra coincide with the modified crystallographic axes (CAS*), a, b*, c*. The z-axis of the local site symmetry axes, i.e. the symmetry adapted axes (SAA) is along the metal oxygen O (22) bond and the other two axes (x, y) are perpendicular to the z-axis as shown in Fig. 1. A common axis system (a/|x, b*|/y, c*|/z) is considered to simplify the calculations.

In SAH, strontium ion is located in a distorted octahedron of oxygen ions [18] and the local symmetry is considered approximately as orthorhombic of first kind (OR-I) [28]. In an OR-I symmetry, the ZFSPs D and E of $3d^5$ ions are obtained [20, 29] as:

$$D = (3\xi^{2}/70P^{2}D) (-B_{20}^{2} - 21 \xi B_{20} + 2B_{22}^{2}) + (\xi^{2}/63P^{2}G) (-5B_{40}^{2} - 4B_{42}^{2} + 14B_{44}^{2})$$
(2)
$$E = (\sqrt{6} \xi^{2} / 70P^{2}D) (2B_{20} - 21 \xi) B_{22} + (\xi^{2} / 63P^{2}G) (3\sqrt{10} B_{40} + 2\sqrt{7} B_{44}) B_{42}$$
(3)

where P = 7B+7C, G = 10B+5C, and D = 17B+5C; B and C are the Racah parameters. Eqs. (2) and (3) are good for weak-field cases as well as for the low-symmetry components [20].

Taking the covalency effect, the parameters B, C and ξ are written in terms of the average covalency parameter N as [30-31]

$$\mathbf{B} = \mathbf{N}^4 \mathbf{B}_0, \, \mathbf{C} = \mathbf{N}^4 \mathbf{C}_0; \, \boldsymbol{\xi}_d = \mathbf{N}^2 \, \boldsymbol{\xi}_d^0 \tag{4}$$

where B_0 , C_0 , and ξ_d^0 are the free ion Racah and spin-orbit coupling parameters, respectively [30-31]. For free Mn^{2+} ion, the above parameters are: $B_0 = 960 \text{ cm}^{-1}$, $C_0 = 3325 \text{ cm}^{-1}$, $\xi_d^0 = 336 \text{ cm}^{-1}$ [21].

From optical absorption study of Mn²⁺ doped crystal having oxygen ligands [32]: B = 917cm⁻¹ and C = 2254 cm⁻¹ ¹were determined. The average value [31] of N = $(\sqrt{\frac{B}{B_0}} + \sqrt{\frac{C}{C_0}})/2$ is used in our calculation.

The SPM is employed to calculate the CFPs, B_{kq} for Mn^{2+} ion in SAH single crystal and ZFSPs are then evaluated with the help of these CFPs.

The SPM has been used to explain the crystal-field splitting of $4f^n$ ions [33] and some $3d^n$ ions [34-36]. Using this model the CFPs are given as [20, 33]

$$\mathbf{B}_{kq} = \sum \bar{\mathbf{A}}_{k} \left(\boldsymbol{R}_{j} \right) \mathbf{K}_{kq} \left(\boldsymbol{\theta}_{j}, \boldsymbol{\phi}_{j} \right)$$
(5)

where R_j are the distances between the Mn²⁺ ion and the ligand ion j, R₀ is the reference distance, generally taken near a value of the R_j 's. θ_j give the bond angles in symmetry adapted axes system (SAAS) [37, 38]. The summation is over all the nearest neighbour ligands. The coordination factor K_{kq} (θ_j , ϕ_j) are the explicit functions of angular position of ligand [20, 37, 39-40]. The intrinsic parameter $\overline{A_k}$ (R_j) is written [9, 28] as:

$$\overline{A_k}(R_j) = \overline{A_k}(R_0)(R_0/R_j)^{t_k}$$
(6)

where $\overline{A_k}$ (R₀) is intrinsic parameter for a given ion host system. The symbol t_k is power law exponent. The crystal-field parameters B_{kg} are determined using Eq. (5) [41].

For $3d^5$ ions, the ratio $\overline{A_2}(R_0)/\overline{A_4}(R_0)$ falls in the range 8 -12 [8, 35]. In the present study, the ratio $\overline{A_2}(R_0)/\overline{A_4}(R_0) = 10$ is considered. For $3d^N$ ions in the 6-fold coordination $\overline{A_4}(R_0)$ is obtained from the relation: $\overline{A_4}(R_0) = (3/4)$ Dq [26]. Since $\overline{A_4}(R_0)$ is independent of the coordination [42], it is obtained from the above relation with Dq = 756 cm⁻¹ [32].

4. RESULTS AND DISCUSSION

The origin of Mn^{2+} ion was shifted at the Sr^{2+} ion to check the substitution at Sr^{2+} site. As the ionic radius of the impurity Mn^{2+} ion (0.083 nm) is smaller than that of the host Sr^{2+} (0.118 nm), a small distortion is expected [43]. Using the coordinates x, y, z; the bond distances of different ligands, R_j together with the angles θ_j and ϕ_j are calculated and are given in Table 1. In adjusting the Mn-O distances to match the experimental values, the site symmetry is preserved and the energy is minimized to have the structural stability. Taking R_0 as slightly smaller than the minimum of R_j [44], i.e. $R_0 = 0.170$ nm, $\overline{A_2}$ (R_0) / $\overline{A_4}$ (R_0) = 10, t_2= 4, t_4= 3 (different from the values in [8]; taking t_2= 3, t_4= 7 as in [8] the ratio |E|/|D| was greater than the standard value 0.33); with no distortion, we obtain B_{kq} and then |D| and |E| which are different from the experimental values as given in Table 2. Therefore, we have taken into consideration the distortion. The bond distances of various ligands R_j and the

angles θ_{j} and ϕ_{j} computed for this are also presented in Table 1. The computed B_{kq} from Eq. (5) and transformation S2 for standardization [27] as well as ZFSPs |D| and |E| taking other parameters as above are shown in Table 2. From Table 2, it is seen that |D| and |E| are in reasonable agreement with the experimental values when distortion is taken into consideration. Such calculations have been done by other workers for Mn^{2+} and Fe³⁺ doped anatase TiO₂ crystal [45]. The interstitial sites for Mn^{2+} ions in SAH were also considered but ZFSPs obtained are quite different from the experimental values and so have not been presented here.

Using evaluated CFPs [46] and CFA program the optical spectra of Mn^{2+} doped SAH crystals are computed. The energy levels of the Mn^{2+} ion are determined by diagonalizing the complete Hamiltonian within the $3d^N$ basis of states in the intermediate crystal field coupling scheme. The computed energy values are given in Table 3 along with the experimental values for comparison. From Table 3 a reasonable agreement between the computed and experimental energy values is found. Hence, the result obtained using SPM with distortion supports the experimental observation that Mn^{2+} ions substitute at Sr^{2+} site in SAH crystal [19].

5. CONCLUSIONS

The zero field splitting parameters (ZFSPs) have been obtained using the superposition model and perturbation equations. The evaluated ZFSPs for Mn^{2+} ion in SAH single crystal at the substitutional Sr^{2+} site at RT are in reasonable agreement with the experimental values. It is confirmed that the Mn^{2+} ion occupies substitutional Sr^{2+} site in SAH crystal .The theoretical results support the experimental finding reported by earlier workers. The method used here may be applied for the modeling of other ion-host systems.

ACKNOWLEDGEMENT

The author is thankful to the Head, Department of Physics, University of Allahabad for providing the facilities of the department and to Prof. C. Rudowicz, Faculty of Chemistry, Adam Mickiewicz. University, Poznan, Poland for providing CFA program.

- Funding Declaration: No funding received from any source. 1.
- 2. Competing Interest: There is no competing interest.

REFERENCES:

- D. J. Newman, B. Ng (Eds.), Crystal Field Handbook, Cambridge University Press, Cambridge, 2000. [1].
- M. I. Bradbury, D. J. Newman, "Ratios of crystal field parameters in rare earth salts", Chem. Phys. Lett. Vol. 1, pp. 44-45, 1967. [2].
- E. Siegel and K. A. M \dot{u} ller, "Local position of Fe³⁺ in ferroelectric BaTiO_{3"}, Phys. Rev. B Vol. 20, pp. 3587-95, 1979. [3].
- Y. Y. Yeung, "Local distortion and zero-field splittings of 3d⁵ ions in oxide crystals", J. Phys. C: Solid State Phys. Vol. 21, pp. [4]. 2453-61, 1988.
- [5]. M. G. Brik, C. N. Avram, N. M Avram, "Calculations of spin Hamiltonian parameters and analysis of trigonal distortions in LiSr(Al,Ga)F₆:Cr³⁺ crystals", Physica **B**, Vol. 384, pp. 78-81, 2006.
- M. L Du, M. G. Zhao, "The eighth-order perturbation formula for the EPR cubic zero-field splitting parameter of d5(6S) ion and its [6]. applications to MgO:Mn²⁺ and MnCl₂.2H₂O", J. Phys. C: Solid State Phys. Vol. 18, pp. 3241-3248, 1985.
- W. L. Yu, "Cubic zero-field splitting of a 6S state ion", Phys. Rev. B, Vol. 39, pp. 622-632, 1989. [7]. T. H. Yeom, S. H. Choh, M. L. Du, "A theoretical investigation of the zero-field splitting parameters for an Mn²⁺ centre in a [8].
- BiVO₄ single crystal", J. Phys.: Condens. Matter, Vol. 5, pp. 2017-2024, 1993. Z. Y. Yang, "An investigation of the EPR zero-field splitting of Cr^{3+} ions at the tetragonal site and the Cd^{2+} vacancy in [9].
- RbCdF₃:Cr³⁺ crystals", J. Phys.: Condens. Matter, Vol. 12, pp. 4091-4096, 2000. [10]. J. L. Ackerman, J. Tegenfeldt, J. S. Waugh, Carbon-13 chemical shielding tensors in calcium formate, J. Amer. Chem. Soc. 96, 6843-6845 (1974).
- [11]. M. E. Stoll, A, J. Vega, R. W. Vaughan, Heteronuclear dipolar modulated chemical shift spectra for geometrical information in polycrystalline solids, J. Chem. Phys. 65, 4093-4098 (1976).
- [12]. R. K. Hester, J. L. Ackerman, B. L. Neff, J. S. Waugh, Separated Local Field Spectra in NMR: Determination of Structure of Solids, Phys. Rev. Lett. 36,1081-1082(1976).
- E. F. Rybaczewski, B. L. Neff, J. S. Waugh, J. S. Sherfinski, High resolution ¹³C NMR in solids: ¹³C local fields of CH, CH₂, and [13]. CH₃, J. Chem. Phys. 67, 1231-1236(1977).
- [14]. M. Linder, A. Hohener, R. R. Ernst, Orientation of tensorial interactions determined from two-dimensional NMR powder spectra, J. Chem. Phys. 73, 4959-4970 (1980).
- P. F. Barron, Solid state ¹³C NMR of mercuric(II) acetate: scalar ¹³C¹⁹⁹Hg coupling and crystal, J. Organomet. Chem. 236, 157-[15]. 161(1982).
- H. W. Spiess, Magnetische Abschirmungstensoren für ¹³C und ¹⁵N in organischen Festkörpern, Ber. Bunsenges. Phys. Chem. 79, [16]. 1009-1013(1975).
- A. Pines, M. G. Gibby, J. S. Waugh, Proton-enhanced NMR of dilute spins in solids, J. Chem. Phys. 59, 569-590 (1973). [17].
- [18]. C. J. Groombridge, R. K. Harris, K. J. Packer, Nuclear Magnetic Resonance and X-Ray Evidence of Crystal Structure for Acetates of Calcium, Strontium, and barium, J. Solid State Chem. 59((1985)306-316.
- S. K. Misra, S. Z. Korczak, EPR study of a single crystal of Mn^{2+} -dopedSr (CH₃COO)₂. $\frac{1}{2}$ H₂O at 295, 77 and 4.2K, Physica B [19].

168(1991)143-148.

- [20]. W. L. Yu, M.G. Zhao, Spin-Hamiltonian parameters of ⁶S state ions, Phys. Rev. B 37 (1988) 9254-9267.
- A. Abragam, B. Bleaney, EPR of Transition Ions, Clarendon Press, Oxford (1970), 1970. [21].
- C. Rudowicz, Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonians and relations between [22]. parameters used in EPR. A critical review, Magn. Reson. Rev. 13 (1987) 1-89.
- [23]. C. Rudowicz, H. W. F. Sung, Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters?, Physica B, 300 (2001) 1- 26.
- C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, Electron paramagnetic resonance of Fe³⁺ ions in (NH₄)₂SbF₅, J. Chem. [24]. Phys. 62 (1975) 4948-4952.
- J. A. Weil, J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd Edition, Wiley, New [25]. York, 2007.
- [26]. C. Rudowicz, S. B. Madhu, Orthorhombic standardization of spin-Hamiltonian parameters for transition-metal centres in various crystals, J. Phys.: Condens. Matter 11 (1999) 273-288.
- [27]. C. Rudowicz and R. Bramley, On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry, J. Chem. Phys. 83(1985) 5192-5197; R. Kripal, D. Yadav, C. Rudowicz and P. Gnutek, Alternative zero-field splitting(ZFS) parameter sets and standardization for Mn^{2+} ions in various hosts exhibiting orthorhombic site symmetry, J. Phys. Chem. Solids, 70(2009) 827-833.
- C. Rudowicz, Y. Y. Zhao, W. L. Yu, Crystal field analysis for 3d⁴ and 3d⁶ ions with an orbital singlet ground state at orthorhombic [28]. and tetragonal symmetry sites, J. Phys. Chem. Solids 53(1992)1227-1236.
- W. L. Yu, M. G. Zhao, Zero-field splitting and the d-d transitions of Mn²⁺ on Ca(II) sites in Ca₅(PO₄)₃F, Phys. Stat. Sol. (b) 140 [29]. (1987) 203-212.
- [30].
- C. K. Jorgensen, Modern Aspects of Ligand Field Theory, North- Holland, Amsterdam, 1971, p 305. M. G. Zhao, M. L. Du, G. Y. Sen, A μ - κ - α correlation ligand-field model for the Ni²⁺-6X⁻ cluster, J. Phys. C: Solid State Phys. 20 [31]. (1987) 5557-5572; Q. Wei, Investigations of the Optical and EPR Spectra for Cr³⁺ Ions in Diammonium Hexaaqua Magnesium Sulphate Single Crystal, Acta Phys. Polon. A118 (2010)670-672.
- R. Kripal, H. Govind, S. K. Gupta, M. Arora, EPR and optical absorption study of Mn²⁺doped zinc ammonium phosphate [32]. hexahydrate single crystals, Physica B, 392 (2007) 92-98.
- [33]. D. J. Newman, Theory of lanthanide crystal fields, Adv. Phys. 20 (1971) 197-256.

- Y. Y. Yeung, D. J. Newman, Superposition-model analyses for the Cr3+ 4A2 ground state, Phys. Rev. B 34 (1986) 2258-2265. [34].
- D. J. Newman, D. C. Pryce, and W. A. Runciman, Superposition model analysis of the near infrared spectrum of Fe (super 2+) in [35]. pyrope-almandine garnets, Am. Miner. 63 (1978) 1278-1281.
- G. Y. Shen, M. G. Zhao, Analysis of the spectrum of Fe2+ in Fe-pyrope garnets, Phys. Rev. B 30 (1984) 3691-3703, Issue 7. [36].

[37]. D. J. Newman and B. Ng, The Superposition model of crystal fields, Rep. Prog. Phys. 52 (1989) 699-763.

- [38]. M. Andrut, M. Wildner, C. Rudowicz, Optical Absorption Spectroscopy in Geosciences, Part II: Quantitative Aspects of Crystal Fields, Spectroscopic Methods in Mineralogy (EMU Notes in Mineralogy, Vol. 6, Ed. A. Beran and E. Libowitzky,
- Eötvös University Press, Budapest, Chapter 4, p.145-188, 2004. [39].
- C. Rudowicz, Transformation relations for the conventional O_k^q and normalised $O_k'^q$ Stevens operator equivalents with k=1 to 6 and [40]. $-k \le q \le k$, J. Phys. C: Solid State Phys. **18**(1985)1415-1430; On the derivation of the superposition-model formulae using the transformation relations for the Stevens operators, J. Phys. C: Solid State Phys. 20(1987) 6033-6037.
- M. Karbowiak, C. Rudowicz, P. Gnutek, Energy levels and crystal-field parameters for Pr³⁺ and Nd³⁺ ions in rare earth(RE) [41]. tellurium oxides RE2Te4O11 revisited - Ascent/descent in symmetry method applied for triclinic site symmetry, Opt. Mater. 33(2011) 1147-1161, doi: 10.1016/j.optmat.2011.01.027.
- [42]. K. T. Han, J. Kim, A theoretical analysis of zero-field splitting of in sodium nitrite, J. Phys.: Condens. Matter 8 (1996) 6759-6767, Number 33.
- [43]. P. Gnutek, Z. Y. Yang, C. Rudowicz, Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal ⁺-O₁²⁻ defect center in KTaO₃ crystal, J. Phys.: Condens. Matter 21 (2009) 455402-455412. Fe_K
- V. V. Laguta, M. D. Glinchuk, I. P. Bykov, J. Rosa, L. Jastrabik, M. Savinov, Z. Trybula, Paramagnetic dipole centers in KTaO3: [44]. Electron-spin-resonance and dielectric spectroscopy study, Phys. Rev. B61 (2000)3897-3904, Issue 6. C. Rudowicz, Y. Y. Zhou, Microscopic study of Cr^{2+} ion in the quasi-2D mixed system $Rb_2Mn_xCr_{1-x}Cl_4$, J. Magn. Magn. Mater.
- [45]. 111(1992) 153-163, Issues 1-2.
- M. Acikgöz, P. Gnutek, C. Rudowicz, Modeling zero-field splitting parameters for dopant Mn²⁺ and Fe³⁺ ions in anatase TiO₂ [46]. crystal using superposition model analysis, Chem. Phys. Letts. 524 (2012)49-55.
- Y. Y. Yeung, C. Rudowicz, Crystal Field Energy Levels and State Vectors for the 3d^N Ions at Orthorhombic or Higher Symmetry [47]. Sites, J. Comput. Phys. 109 (1993) 150-152.

TABLE AND FIGURE CAPTIONS:

Table 1. Coordinates of oxygen ligands, Mn-oxygen bond distances R_i and coordination

angles θ_{i} and ϕ_{i} for Mn²⁺ ion doped SAH single crystals.

Table 2. CFPs and ZFSPs calculated by the superposition model for Mn^{2+} ion doped SAH single crystal with experimental values.

- Table 3. Experimental and calculated (CFA package) energy band positions of Mn²⁺ doped SAH single crystal.
- Fig. 1. Coordination around Mn^{2+} in SAH single crystal.

				Table 1	L			
Position of Mn ²⁺	Ligands			Sp	herical co-	ordinates	s of 1	igands
		x	y z	<u>r</u>	R(nm)		θ^0	φ
		(Å)					
		Withou	t distortio	on				
Site I: Substitutional	O(12) 0	0.1720	0.8056	0.7817	0.2472	R ₁ 91	.16	$\theta_1 \ 95.40 \ \phi_1$
Sr(1)	O(21) (0.1685	0.8610	1.0376	6 0.2722	R ₂ 85	5.67	$\theta_2 \hspace{0.1 cm} 94.99 \hspace{0.1 cm} \phi_2$
(0.4050, 0.9275, 0.8321)	O(22) (0.3000	1.0231	1.0796	0.2832	R ₃ 84	.98	θ_{3} 92.13 ϕ_{3}
	O(31)	0.2401	1.1993	0.8181	0.2628	R_4 90	0.30	θ_4 93.59 ϕ_4
	O(32)	0.3259	1.1154	0.6312	0.2690	R ₅ 94.	28	$\theta_5 \ 91.68 \ \phi_5$
	Ow(1)	0.6299	0.8348	0.6377	0.2538	R_6 94.	39	$\theta_6 84.90 \varphi_6$
		With d	istortion					
	O(12	2)			0.26	$72 R_1 + \Delta l$	R_1	
	O(21	l)			0.29	$22 \text{ R}_2 + \Delta l$	R_2	
	O(22	2)			0.30	$32 \text{ R}_3 + \Delta \text{I}$	R_3	
	O(31	l)			0.28	$28 R_4 + \Delta l$	R_4	
	O(32	2)			0.28	$90 \text{ R}_5 + \Delta \text{I}$	R_5	
	Ow(1)			0.26	$88 R_6 + \Delta l$	R_6	

		Crystal- field parameters (cm ⁻¹)				Zero-f	$\frac{1}{0^{-4} \text{cm}^{-1}}$		
Site	R ₀ (nm)	B ₂₀	B ₂₂	B ₄₀	B ₄₂	B ₄₄	D	E	E / D
			Without of	listortion					
Site I									
$\frac{\overline{A_2}}{\overline{A_4}} = 10$	0.170	-5835.09	-7122.82	2628.40)4 2762.62	3621.629	574.4	322.6	0.561
			With dis	tortion					
Site I $\frac{\overline{A_2}}{\overline{A_4}} = 10$	0.170	-4898.5	1 3924.43	35 2130.4	49 2239.4	04 2936.34	4 306.'	7 84.0	0.273
						Exp	p. 306.2	21.3	0.069

Table 2	
---------	--

Table 3

Transition from ${}^{^{6}}A_{1g}(S)$	Observed wave number (cm^{-1})	Calculated wave number (cm^{-1})	
⁴ T (C)	16044		
$\frac{1}{4}$ T (C)	10044	10488 10406 10627	
$I_{2g}(G)$	20433	19488, 19490, 19027,	
4		19634, 21198, 21212	
$^{4}E_{g}(G)$	24108	21964, 21968,	
		23759, 23772	
${}^{4}A_{1g}(G)$	24242	24223, 24432	
${}^{4}T_{2g}(D)$	26724	25960, 25973, 26549,	
26 /		26577, 27284, 27321	
${}^{4}E_{\sigma}(D)$	30451	29979, 30156,	
5. /		30213, 30442	
${}^{4}T_{19}(P)$	33956	32403, 32784, 32902,	
-8.		33142, 33291, 33899	
${}^{4}A_{2\sigma}(F)$	36846	36798, 36929	
${}^{4}T_{10}(F)$	38521	37944, 37974, 38147,	
18 Y		38183, 39079, 39246	

г

