"Effect of Noise on worker of Transport Industry"

Mr.Brijesh Shaw, Prof. Dr Ajay Gupta(HOD-Mechanical Department)

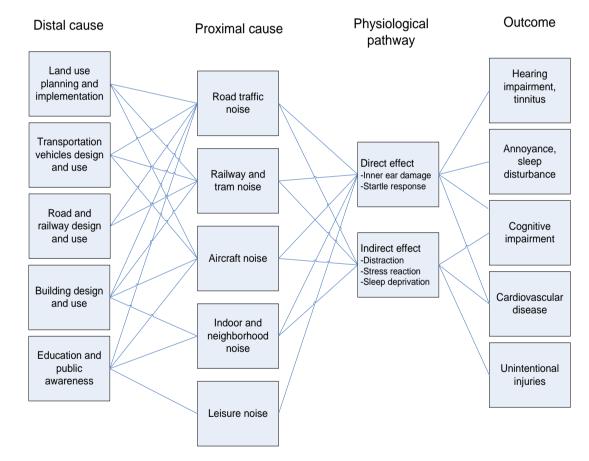
MTechHSE(Roll Number -20200997) DEPARTMENT OF HEALTH SAFETY & ENVIRONMENT ENGINEERING Shri Rawatpura Sarkar University, Raipur

ABSTRACT:-

Noise Pollution in transportation industry is heavy in terms of its impact to direct exposure to mass people, will result into health deviation in multiple mays as depression, nervous system disorder, hearing immurement etc. resulted into economic and genetic impacts which is short term and long term. Noise is one of the leading causes of hearing loss among the 466 million people around the world living with a moderate to severe hearing loss. While noise exposure can damage the hearing of people of any age, research has shown that young people are increasingly at risk due to recreational activities involving music. In fact, WHO estimates that 1.1 billion young people (aged 12-35 years) are at risk of hearing loss due to exposure to noise in recreational settings. One of the primary purposes of International Noise Awareness Day is to let people know that while noise-induced hearing loss is permanent, it is completely preventable by taking simple steps to avoid noise exposure and protect your hearing

Date of Submission: 07-06-2022	Date of Acceptance: 22-06-2022

1. Introduction


Noise pollution is a major problem in India. The government of India has rules and regulations against firecrackers and loudspeakers, Road traffic but enforcement is extremely lax. Despite increased enforcement and stringency of laws now being practiced in urban areas, rural areas are still affected.

The Supreme Court of India had banned playing of music on loudspeakers after 10pm. In 2015, The National Green Tribunal directed authorities in Delhi to ensure strict adherence to guidelines on noise pollution, saying noise is more than just a nuisance as it can produce serious psychological stress. However, implementation of the law continues to remain poor, Plan do check act methodology assist to boost enforcement actions. So, Microanalysis, identify risk and its assessment is indeed to control or isolate hazard exists General source of noise are:

- Transportation system
- Road Traffic
- Noise From Rail roads
- Construction noise
- Industrial Noise
- Loud Speaker
- Fire Crackers

Relationship between noise and health

Enforcement Agencies

List of National and International Premier Enforcement Agencies actively work and Advice, Recommendation, Conventions, Rules and Regulations are been setup to control or reduce or eliminate Noise Pollution are:

World:

World Health Organization International Labour Organization

India: Central Pollution Control Board Directorate of Industrial Health and Safety, Ministry of Labour

Objective of the project

- An assessment of Hearing Capacity
- To identify the risk for Drivers
- To evaluate the risk of hearing capacity of transportation worker.
- To protect the employee from hazard
- To aware the workers about the occupational health hazard.
- To create healthy and positive environment in Transportation industry
- To suggest Technical and behavioral based safety.
- To understand Legal implications from Enforcement agencies

Analysis & methodology

- Measuring ambient noise.
- Measuring decibel level at different speed has been measured in more then eleven month of time span.
- In goods and material movement truck used in company taken under noise level study.
- Four trucks permitted to assessment on same with four drivers.
- Measuring hearing capacity of drivers through audiometry test every four month each.

• Mean average value to be undertaken to compare noise levels above permissible limit and audiometry report and graph to be analyzed to save.

• IS:3483 : Intensity levels in the different octave bands are measured by a sound level meter in conjunction with octave-band filters. The noises are picked up by a high-quality microphone, passed through an octave-band filter and the sound pressure levels recorded on a level recorder. Impact noise, which are highly complex in nature are measured with an impact noise analyzer and simultaneously recorded on a magnetic tape recorder to facilitate octave-band analysis. It is also sometimes displayed on screen.

• A sound level meter is used for acoustic (sound that travels through air) measurements. It is commonly a hand-held instrument with a microphone. The best type of microphone for sound level meters is the condenser microphone, which combines precision with stability and reliability. The diaphragm of the microphone responds to changes in air pressure caused by sound waves. That is why the instrument is sometimes referred to as a Sound Pressure Level (NABL Lab Tested)

Device Used To Measurement of Noise Level

NO. SL-4010 Measurement Range: 30dBA~130dBA Accuracy: +- 1.5dB (94dB@1KHz) Frequency Range: 31.5Hz~8KHz Power Supply: 3*1.5V AAA Battery Made in China

Audiometry Measuring Device

Audiogram Kit Instruments: artificial mastoid, SLM, cables/transducer Standards: ANSI

Permissible exposure limit (PEL) noise level as per the OSHA Standard 1970

Sound level in dB(A)	Permissible exposure limit (PEL)In hours as per OSHA standard
85 dB	16 hours
90 dB	8 hours
92 dB	6 hours
95 dB	4 hours
97 dB	3 hours
100 dB	2 hours
105 dB	1 hours
110 dB	¹ / ₂ hours
115 dB	¹ / ₄ hours

S. No.	Type of vehicle	Noise Limits from 1 st January, 2003, dB(A)
1.0	Two wheeler	
1.1	Displacement upto 80 cc	75
1.2	Displacement more than 80 cc but upto 175 cc	77
1.3	Displacement more than 175 cc	80
2.0	Three wheeler	
2.1	Displacement upto 175 cc	77
2.2	Displacement more than 175 cc	80
3.0	Vehicles used for carriage of passengers and capable of having not more than nine seats, including the driver's seat	74
	a maximum gross Vehicle Weight(GVW) of more than 3.5 tonnes	
4.1	With an engine power less than150 KW	78
4.2	With an engine power of 150 KW or above	80
5.0	Vehicles used for carriage of passengers having more than nine seats, including the driver's seat: Vehicles used for carriage goods.	
5.1	With maximum GVW not exceeding 2 tonnes	76
5.2	With maximum GVW greater than 3 tonnes but not exceeding 3.5 tonnes	77
6.0	Vehicles used for transport of goods with a maximum GVW exceeding 3.5 tonnes.	
6.1	With an engine power less than 75 KW	77
6.2	With an engine power of 75 KW or above but less than 150 KW	78

licable from Noise limits fo

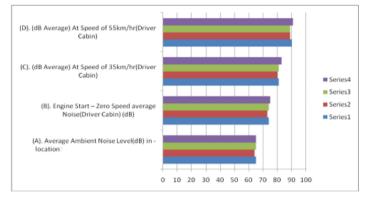
TLV for Noise (ACGIH,2007)

Duration (exposure	Sound level dBA (TLV)	
24	Hours	80
16	Hours	82
8	Hours	85
4	Hours	8/8
2	Hours	91
1	Hours	94
30	Minutes	97
15	Minutes	100
7.5	Minutes	103
3.75	Minutes	106
1.88	Minutes	109
0.94	Minutes	112
28.12	Seconds	115
14.05	Seconds	118
7.03	Seconds	121
3.52	Seconds	124
1.76	Seconds	127
0.88	Seconds	130
0.44	Seconds	133
0.22	Seconds	136
0.11	Seconds	139

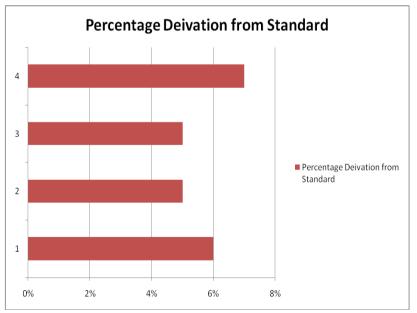
Measurement of noise and Ear Audiometry report Details.

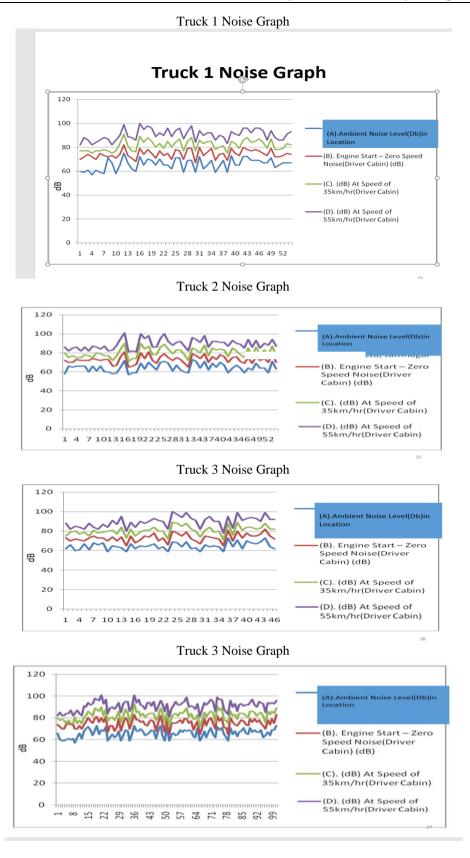
1020 no's reading is performed and measured during span of thesis to measure decibel range including: Ambient noise level(factory Premises)

- At ideal Engine Start Condition
- At speed of 35km/hr
- At speed of 55km/hr


24 Nos Audiometry report has been tested for four drives (Audiometry test for all driver every three month) to analyze a hearing deficiency graph.

RC book and Driving license for Documentation has been taken from company authority.


Deviation in Decibel at different speed



Deviation in Decibel at different speed

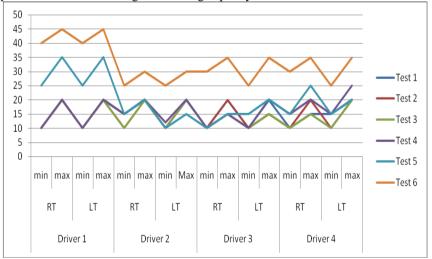
Percentage Deviation from Standard Decibel value.

25

Noise Level Mean Value graph

Truck no.	No of Sample	(A). Average Ambient Noise Level(dB) in — location	(B), Engine Start – Zero Speed average Noise(Driver Cabin) (dB)	(C). (dB Average) At Speed of 35km/ht[Driver Cabin]	(D). (dB Average) At Speed of 55km/hr(Driver Cabin)	B,C,D Mean Average(dB)	Mean Higher <u>then</u> min prescribe limit. (Number + 77dB)	Legal Recommended Level	Percentage Deviation from Standard
1	54	65	74	81	90	82	5.16	77	6%
2	54	64	73	80	89	81	4	77	5%
3	46	65	74	81	89	81	4	77	596
4	101	65	75	83	91	83	6	77	7%
Total = 4	255	65	75	81	90	82	5	77	6%

Mean percentage shows then 5-6% higher dB level is been measured


Audiometry Result

Min Max hearing Capacity of Drives in Decibel on Audiometric Reports

	Driver 1				Driver 2				Driver 3				Driver 4			
	RT		LT		RT		ιτ		RT		LT		RT		LT	
	min	max	min	Max												
Test 1	10	20	10	20	15	20	10	20	10	20	10	20	10	15	15	20
Test 2	10	20	10	20	10	20	10	20	10	20	10	15	10	20	10	20
Test 3	10	20	10	20	10	20	10	20	10	15	10	15	10	15	10	20
Test 4	10	20	10	20	15	20	12	20	10	15	10	20	15	20	15	25
Test 5	25	35	25	35	15	20	10	15	10	15	15	20	15	25	15	20
Test 6	40	45	40	45	25	30	25	30	30	35	25	35	30	35	25	35

2. Conclusion

Audiometry Graph for Full term of testing and hearing capacity 24 Nos test.

3. Result

The presented study has been demonstrated the hazards and risks involved due to continuous and high-level noise exposure in the transportation segment of industry. The main hazards are noise hazards and its impact on hearing capacity are found by an assessment. We have compared the hazards in steps before suggestions and

after suggestions which are found to be harmful to the drivers. so Immediate action must be taken to control this hazard to save workers' health and promote safety to the worker.

Hence study, we came to conclude that an assessment is very necessary for the transportation industry as on noise less care has been take. Which identified the noise hazards and associated the risk during exposure in driving with the help of instrument! Which tells us the actual data or values. Then we suggested control measures and techniques keep the driver and long term exposed person to be safe and healthy. And also helps to improve the working conditions in transportation industry

4. REFERENCES: -

- [1]. STUDY OF EFFECT OF TRAFFIC NOISE ON THE RESIDENSIALS OF THEALLAHABAD CITY, IOSR Journal of Engineering (IOSRJEN) ISSN(e) : 2250-3021ISSN(p): 2278-8719Volume 8, Issue9 (September 2020)
- [2]. Research on Noise exposure while commuting in Toronto a study of personal andpublictransportationinTorontoChristopherM.K.L.Yao,AndrewK.Ma,SharonL.Cushing & Vincent Y.W. Lin Journal of Otolaryngology - Head & Neck Surgeryvolume46, Article number: 62 (2017)
- [3]. Sreenivasulu M. Survey and cross-sectional study on noise induced hearing loss of policeconstables and officers workingin heavytrafficareas-anIndian
- [4]. Perspective.TJPRC:IJOHNS.2016;1(2):17-20.TJPRC:IJOHNSDEC20165
- [5]. IndoraV, Khaliq F, VaneyN. Evaluation of theauditorypathwayin traffic policemen.
- [6]. IntJOccup EnvironMed. 2017;8:109-16. Doi:10.15171/ijoem.2017.913
- [7]. Dhinakaran N, Karthikeyan BM. Prevalence of noise induced hearing loss amongpolicepersonnelinMaduraiCity.IntJAdvRes.2017;5(8):410-6.Doi:10.21474/IJAR01/5075
- [8]. M.MohammadiRoozbahaniet.al, "Riskassessmentofworkersexposedtonoisepollutioninatextileplant", International journal of Environm ental Science and Technology Vol.06, 2009, pp. 591-596.
- [9]. Talukdar M. K., "noise pollution and its control in textile industry", IJFTR vol. 26,2001, pp.44-49.
- [10]. PiersonWR, MaheJE. Noiseand the high way patrolman. JOccupMed (Lond) 1973; 15:892e3.
- [11]. RossBC.Noiseexposureof motorcyclists.Ann OccupHyg 1989;33:123e7.
- [12]. KirchnerDB, EvensonCE, DobieRA, RabinowitzP, CrawfordJ, KopkeR, Hudson
- [13]. W.Occupationalnoise-inducedhearingloss2012.JAmCollOccupEnvironMed2012;54:106e8.
- [14]. ShresthaI, ShresthaIL, Polharel M, Amatya RCM, Karki DR. The prevalence ofnoise induced hearing loss among traffic police personnel of Kathmandu MetropolitanCity.Kathmandu UnivMed J2011;36:274e8.
- [15]. Nelson DI, Nelson RY, Concha-Barrientos M, Fingerhut M. The global burden ofoccupationalnoise-induced hearingloss. Am JIntern Med2005;48:1e15.
- [16]. PalmerK,GriffinM,SydallHE,DavisA,PannettB,CoggonD.Occupationalexposuretonoiseandattributableburdenofhearingdifficultiesin GreatBritain.OccupEnviron Med 2002;59:634e9.
- [17]. EuropeanEnvironmentAgency.NoiseinEurope2014,EEAReportNo10/2014,ISSN1977-8449. 2014.
- [18]. G. Bluhm, E. Nordling, N. Berglind. Road traffic noise and annoyance--an increasingenvironmentalhealth problem. NoiseHealth, 6(24):43-9, Jul-Sep 2004.
- [19]. S. A. Stansfeld, M. P. Matheson. Noise pollution: non-auditory effectson health.BritishMedicalBulletin, 68(1):243-257, 2003.
- [20]. M. Wilhelmsson. The Impact of Traffic Noise on the Values of Single-family Houses. Journal of Environmental Planning and Management, 43(6), 799-815, 2000.
- [21]. TheFactories Act &Rules.
- [22]. IS:3483CodeandPracticeforNoiselevelreduction
- [23]. FundamentalsofIndustrialHygiene,NSC,USA.
- [24]. SafetyManagement,Grimaldi&Simonds,AllIndiaTravelerBookseller,Delhi-110005.
- [25]. OccupationalSafetyManagementandEngineering,WillieHammer,Prentice-Hall,
- [26]. EncyclopediaofOccupationalHealth&Safety,ILO.Geneva.
- [27]. Noise Control in Industry: A Basic Guide Canadian Centre for Occupational HealthandSafety.
- [28]. HealthandSafetyBook,K UMistry
- [29]. ISO 6189:1983 Acoustics. Pure tone air conduction threshold audiometry for hearingconservation purposes.
- [30]. ISO 1999:1990(E). Acoustics. Determination of occupational noise exposure and estimation of noise-induced hearing impairment.
- [31]. ISO 8253-1:1989 Acoustics. Audiometric Test methods Part 1: Basic pure tone airandboneconduction threshold audiometry.
- [32]. ISO389-1:1998Acoustics.Referencezeroforthecalibrationofaudiometricequipment-
- Part1:Referenceequivalentthresholdsoundpressure levelsfor puretones&supra-aural earphones.
- [33]. ISO 7029:1984 and 2000 Acoustics. Statistical distribution of hearing thresholds as afunction of age. Industrial Audiometry by Bryan & Tempest, 4th Ed., & Examples ofIndustrial Audiometry. Available from Dr. W. Tempest by post at:Kismet, Croyde Rd,St.Annes,Lancs.FY81EX, UK. ControllingNoise atWork, 2nd Ed,Health andSafetyExecutive, UK,ISBN 0717661644, HSEBooks