Uio-67-doxorubicin As a drug delivery platform for doxorubicin

Pourya Zarshenas

Department of Inorganic Chemistry, Faculty of Chemistry & Petroleum Sciences ShahidBeheshti University (SBU), Tehran, Iran

Abstract

The drug delivery application of Porous metal—organic frameworks (MOFs) have been investigated due to their unique structures which are built of inorganic nodes and organic ligands. In present study, Uio-67-doxorubicin was successfully prepared by applied for delivery of doxorubicin. Using variety of analytical methods including FTIR, FESEM, EDS, and the prepared nanostructure was characterized. Results revealed the placement of the drug in zeolite is well done and also the in vitro loading and releasing studies, for doxorubicin was evaluated. In addition, based on the in vitro cytotoxicity results, Uio-67-doxorubicin was able to increase cytotoxicity compared to that of doxorubicin on HT-29 cancerous cells indicating the highlighted role of this drug delivery system.

Keywords: Uio-67, MOF, drug delivery, doxorubicin, Cytotoxicity, Uio-67-doxorubicin

Date of Submission: 14-06-2022 Date of Acceptance: 29-06-2022

Fig1. Placement of drug in the structure of MOF.

1. Introduction

Cancer as the most prevalent diseases worldwide is one of the main public health concerns. In spite of intensive efforts for treatment of cancer, the necessity of developing effective agents isn't ignorable [1]. Designing an ideal drug delivery system for targeting cancer cell is considered as a hot topic in life science research. MOFs with crucial features including high drug loading capacity, high surface area, as well as tunable pore size is used for drug delivery intensively[2]. MOFs plays an important role as an carriers in drug delivery because they are

non-toxic as well as the uptake of drugs and getting across the cell membrane has been facilitated via controlling the size of MOFs[3].

Doxorubicinis anticancer drugs which is able to induces cytotoxic and increase DNA damage[4]. Although, doxorubicinfrequently applied, developed drug resistance and severe side effects affected its clinical application [5]. Encapsulate of doxorubicinusing various DDS could be an effective idea[6]. In present work, the drug loading capacity of i for doxorubicinas an anticancer drug was evaluated. Upon exposure by Uio-67-doxorubicin the in vitro cytotoxicity against cancer cells were assessed.

Finally but contrary to the original goal of this project, which was to use a muff, because of the simpler and faster synthesis, we carried out this project with a zeolite.

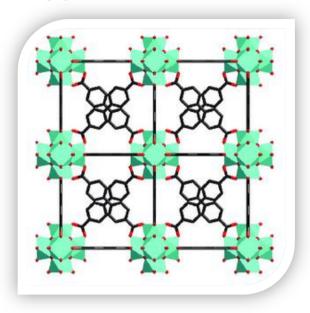


Fig2. Placement of Structures of UiO-67[26]

UiO-67 is a Zirconium-based metal-organic framework that features larger pore sizes compared to UiO-66. This is due to the longer structure of BPDC (UiO-67) as compared to BDC (UiO-66).

The structure and properties of two new UiO-67-type metal—organic frameworks, along with their linker synthesis and powder and single crystal synthesis, are presented. The new MOFs, UiO-67-Me and UiO-67-BN, are based on 3,3'-dimethylbiphenyl and 1,1'-binaphthyl linker scaffolds, and show a much higher stability to water than the thoroughly investigated UiO-67, which is based on the biphenyl scaffold. On the basis of structure models obtained from single crystal X-ray diffraction, it is seen that these linkers are partly shielding the Zr cluster. The new materials have higher density than UiO-67, but show a higher volumetric adsorption capacity for methane. UiO-67-BN exhibits excellent reversible watersorption properties, and enhanced stability to aqueous solutions over a wide pH range; it is to the best of our knowledge the most stable Zr-MOF that is isostructural to UiO-67 in aqueous solutions.

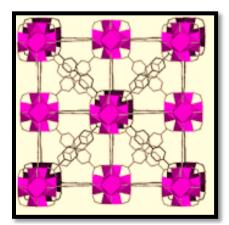


Fig3. Placement of Structures of UiO-67

Application

- Gas adsorption and storage:
- o Carbon dioxide (CO₂)
- O Hydrogen (H₂)
- o Methane (CH₄)
- ❖ Neutralisation/detoxication of chemical warfare agents (nerve gas)
- Catalyst
- Biomolecular motor
- Biomedical imaging

Properties

Formula: $Zr_6O_4(OH)_4(BPDC)_6$ Surface area: up to 1970+ m²/gr (BET)

NanoComposite

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. [7]

The idea behind Nanocomposite is to use building blocks with dimensions in nanometre range to design and create new materials with unprecedented flexibility and improvement in their physical properties. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. [8]

The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed.

- 1. <5 nm for catalytic activity
- 2. <20 nm for making a hard magnetic material soft
- 3. <50 nm for refractive index changes
- 4. <100 nm for achieving superparamagnetism, mechanical strengthening or restricting matrix dislocation movement [9].

Nanocomposites are found in nature, for example in the structure of the abalone shell and bone. [10] The use of nanoparticle-rich materials long predates the understanding of the physical and chemical nature of these materials. Some researchersinvestigated the origin of the depth of color and the resistance to acids and biocorrosion of Maya blue paint, attributing it to a nanoparticle mechanism. From the mid-1950s nanoscaleorganoclays have been used to control flow of polymer solutions (e.g. as paint viscosifiers) or the constitution of gels (e.g. as a thickening substance in cosmetics, keeping the preparations in homogeneous form). By the 1970s polymer/clay composites were the topic of textbooks, although the term "nanocomposites" was not in common use. [11]

In mechanical terms, nanocomposites differ from conventional composite materials due to the exceptionally high surface to volume ratio of the reinforcing phase and/or its exceptionally high aspect ratio. The reinforcing material can be made up of particles (e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibers (e.g. carbon nanotubes or electrospun fibers). [12] The area of the interface between the matrix and reinforcement phase(s) is typically an order of magnitude greater than for conventional composite materials. [13] The matrix material properties are significantly affected in the vicinity of the reinforcement. Some scientists be aware that with polymer nanocomposites, properties related to local chemistry, degree of thermoset cure, polymer chain mobility, polymer chain conformation, degree of polymer chain ordering or crystallinity can all vary significantly and continuously from the interface with the reinforcement into the bulk of the matrix. This massive quantity of reinforcement surface area means that a relatively small amount of nanoscale reinforcement can have an observable effect on the macroscale properties of the composite. [14]

MOF

Metal-organic frameworks (MOFs) are a class of compounds consisting of metal ions or clusters coordinated to organic ligands to form one-, two-, or three-dimensional structures. They are a subclass of coordination polymers, with the special feature that they are often porous. The organic ligands included are sometimes referred to as "struts" or "linkers", one example being 1,4-benzenedicarboxylic acid (BDC).

More formally, a metal—organic framework is a coordination network with organic ligands containing potential voids. A coordination network is a coordination compound extending, through repeating coordination entities, in

one dimension, but with cross-links between two or more individual chains, loops, or spiro-links, or a coordination compound extending through repeating coordination entities in two or three dimensions; and finally a coordination polymer is a coordination compound with repeating coordination entities extending in one, two, or three dimensions.[1]

In some cases, the pores are stable during elimination of the guest molecules (often solvents) and could be refilled with other compounds. Because of this property, MOFs are of interest for the storage of gases such as hydrogen and carbon dioxide. Other possible applications of MOFs are in gas purification, in gas separation, in water remediation, [2] in catalysis, as conducting solids and as supercapacitors. [3]

The synthesis and properties of MOFs constitute the primary focus of the discipline called reticular chemistry (from Latin reticulum, "small net").[4] In contrast to MOFs, covalent organic framework (COFs) are made entirely from light elements (H, B, C, N, and O) with extended structures.

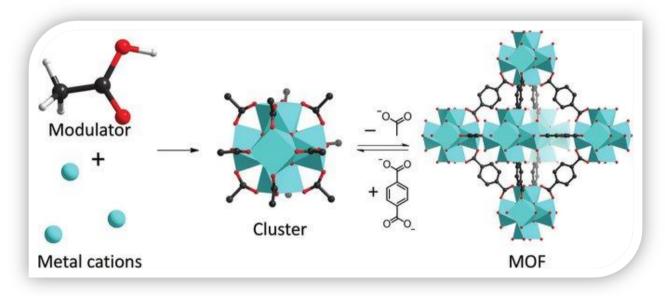


Fig4. Representative modulated synthesis [26]

Structure

MOFs are composed of two major components: a metal ion or cluster of metal ions and an organic molecule called a linker. For this reason, the materials are often referred to as hybrid organic—inorganic materials; however, this terminology has recently been explicitly discouraged.[1] The organic units are typically mono-, di-, tri-, or tetravalent ligands.[6] The choice of metal and linker dictates the structure and hence properties of the MOF. For example, the metal's coordination preference influences the size and shape of pores by dictating how many ligands can bind to the metal and in which orientation.

Classification of hybrid materials based on dimensionality					
		Dimensionality of Inorganic			
		0	1	2	3
Dimensionality of Organic	0	Molecular Complexes	Hybrid Inorganic Chains	Hybrid Inorganic Layers	3-D Inorganic Hybrids
	1	Chain Coordination Polymers	Mixed Inorganic- Organic Layers	Mixed Inorganic- Organic 3-D Framework	
	2	Layered Coordination Polymer	Mixed Inorganic- Organic 3-D Framework		
	3	3-D Coordination Polymers			

To describe and organize the structures of MOFs, a system of nomenclature has been developed. Subunits of a MOF, called secondary building units (SBU), can be described by topologies common to several structures. Each topology, also called a net, is assigned a symbol, consisting of three lower-case letters in bold. MOF-5, for example, has a pcu net.

Attached to the SBUs are bridging ligands. For MOF's, typical bridging ligands are di- and tricarboxylic acids. These ligands typically have rigid backbones. Examples are benzene-1,4-dicarboxylic acid (BDC or terephthalic acid, biphenyl-4,4'-dicarboxylic acid (BPDC), and the tricarboxylic acid trimesic acid.

Synthesis

General synthesis

The study of MOFs developed from coordination chemistry and solid state inorganic chemistry, especially the zeolites. Except for the use of preformed ligands, MOFs and zeolites are produced almost exclusively by hydrothermal or solvothermal techniques, where crystals are slowly grown from a hot solution. In contrast with zeolites, MOFs are constructed from bridging organic ligands that remain intact throughout the synthesis.[8] Zeolite synthesis often makes use of a "template". Templates are ions that influence the structure of the growing inorganic framework. Typical templating ions are quaternary ammonium cations, which are removed later. In MOFs, the framework is templated by the SBU (secondary building unit) and the organic ligands. A templating approach that is useful for MOFs intended for gas storage is the use of metal-binding solvents such as N,N-diethylformamide and water. In these cases, metal sites are exposed when the solvent is evacuated, allowing hydrogen to bind at these sites. Four developments were particularly important in advancing the chemistry of MOFs.

- (1) The geometric principle of construction where metal-containing units were kept in rigid shapes. Early MOFs contained single atoms linked to ditopic coordinating linkers. The approach not only led to the identification of a small number of preferred topologies that could be targeted in designed synthesis, but was the central point to achieve a permanent porosity.
- (2) The use of the isoreticular principle where the size and the nature of a structure changes without changing its topology led to MOFs with ultrahigh porosity and unusually large pore openings.
- (3) Post- synthetic modification of MOFs increased their functionality by reacting organic units and metal-organic complexes with linkers.
- (4) Multifunctional MOFs incorporated multiple functionalities in a single framework.

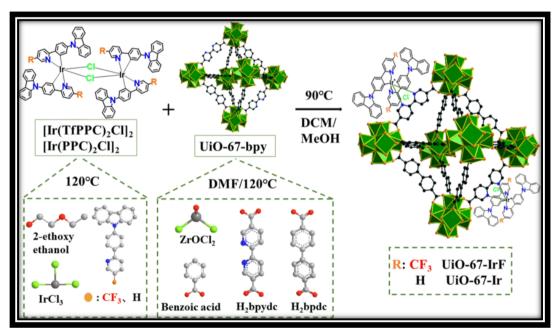


Fig5. Synthesis routine for UiO-67-IrF [28]

Since ligands in MOFs typically bind reversibly, the slow growth of crystals often allows defects to be redissolved, resulting in a material with millimeter-scale crystals and a near-equilibrium defect density. Solvothermal synthesis is useful for growing crystals suitable to structure determination, because crystals grow

over the course of hours to days. However, the use of MOFs as storage materials for consumer products demands an immense scale-up of their synthesis. Scale-up of MOFs has not been widely studied, though several groups have demonstrated that microwaves can be used to nucleate MOF crystals rapidly from solution. This technique, termed "microwave-assisted solvothermal synthesis", is widely used in the zeolite literature, and produces micron-scale crystals in a matter of seconds to minutes, in yields similar to the slow growth methods. Some MOFs, such as the mesoporous MIL-100(Fe), can be obtained under mild conditions at room temperature and in green solvents (water, ethanol) through scalable synthesis methods.

A solvent-free synthesis of a range of crystalline MOFs has been described. Usually the metal acetate and the organic proligand are mixed and ground up with a ball mill. $Cu_3(BTC)_2$ can be quickly synthesised in this way in quantitative yield. In the case of $Cu_3(BTC)_2$ the morphology of the solvent free synthesised product was the same as the industrially made Basolite C300. It is thought that localised melting of the components due to the high collision energy in the ball mill may assist the reaction. The formation of acetic acid as a by-product in the reactions in the ball mill may also help in the reaction having a solvent effect in the ball mill. It has been shown that the addition of small quantities of ethanol for the mechanochemical synthesis of $Cu_3(BTC)_2$ significantly reduces the amounts of structural defects in the obtained material.

A recent advancement in the solvent-free preparation of MOF films and composites is their synthesis by chemical vapor deposition. This process, MOF-CVD,[19] was first demonstrated for ZIF-8 and consist of two steps. In a first step, metal oxide precursor layers are deposited. In the second step, these precursor layers are exposed to sublimed ligand molecules that induce a phase transformation to the MOF crystal lattice. Formation of water during this reaction plays a crucial role in directing the transformation. This process was successfully scaled up to an integrated cleanroom process, conforming to industrial microfabrication standards.[20]

Numerous methods have been reported for the growth of MOFs as oriented thin films. However, these methods are suitable only for the synthesis of a small number of MOF topologies. One such example being the vapor-assisted conversion (VAC) which can be used for the thin film synthesis of several UiO-type MOFs.[21]

High-throughput synthesis

High-Throughput (HT) methods are a part of combinatorial chemistry and a tool for increasing efficiency. Basically, there are two synthetic strategies within the HT-methods: On the one hand the combinatorial approach, here all reactions take place in one vessel, which leads to product mixtures and on the other hand the parallel synthesis, here the reactions take place in different vessels. Furthermore, a distinction is made between thin films and solvent-based methods.[22]

Solvothermal synthesis can be carried out conventionally in a teflon reactor in a convection oven or in glass reactors in a microwave oven (high-throughput microwave synthesis). The use of a microwave oven changes, in part dramatically, the reaction parameters. In addition to solvothermal synthesis, there have been advances in using supercritical fluid as a solvent in a continuous flow reactor. Supercritical water was first used in 2012 to synthesize copper and nickel-based MOFs in just seconds.[23] In 2020, supercritical carbon dioxide was used in a continuous flow reactor along the same time scale as the supercritical water-based method, but the lower critical point of carbon dioxide allowed for the synthesis of the zirconium-based MOF UiO-66.[24]

High-throughput solvothermal synthesis

In high-throughput solvothermal synthesis, a solvothermal reactor with (eg) 24 cavities for Teflon reactors is used. Such a reactor is sometimes referred to as a multiclav. The reactor block or reactor insert is made of stainless steel and contains 24 reaction chambers, which are arranged in four rows. With the miniaturized Teflon reactors, volumes of up to 2 mL can be used. The reactor block is sealed in a stainless steel autoclave; for this purpose, the filled reactors are inserted into the bottom of the reactor, the Teflon reactors are sealed with two Teflon films and the reactor top side is put on. The autoclave is then closed in a hydraulic press. The sealed solvothermal reactor can then be subjected to a temperature-time program. The reusable Teflon film serves to withstand the mechanical stress, while the disposable Teflon film seals the reaction vessels. After the reaction, the products can be isolated and washed in parallel in a vacuum filter device. On the filter paper, the products are then present separately in a so-called sample library and can subsequently be characterized by automated X-ray powder diffraction. The informations obtained are then used to plan further syntheses.

Reversible hydration and dehydration

During drying it comes to the removal of free and bound water from the crystal grid, which is then counterbalanced back in contact with materials such as stored grain and feed, pet litter, in flue gas to prevent

condensation and the like. [19] Clinoptilolite stabilize moisture at a low dose of volume and avoid the adverse effects of water. [20]

Metal-organic frameworks (MOFs) are organic-inorganic hybrid crystalline porous materials that consist of a regular array of positively charged metal ions surrounded by organic 'linker' molecules. The metal ions form nodes that bind the arms of the linkers together to form a repeating, cage-like structure. Due to this hollow structure, MOFs have an extraordinarily large internal surface area.

Researchers have synthesized MOFs that feature a surface area of more than 7800 square meters per gram. To put this into context, if you could lay out the available surface area in a teaspoon of this material (around a gram of solid), it would cover an entire soccer field. MOFs offer unique structural diversity in contrast to other porous materials uniform pore structures; atomic-level structural uniformity; tunable porosity; extensive varieties; and flexibility in network topology, geometry, dimension, and chemical functionality. This allows researchers the successful control of framework topology, porosity, and functionality.

MOFs unique structure design and tunability – crystalline porous materials that are composed of both organic and inorganic components in a rigid periodic networked structure— is not readily accessible in conventional porous materials, e.g., purely inorganic zeolites. By making the MOF from different metal atoms and organic linkers, researchers can create materials that selectively absorb specific gases into tailor-made pockets within the structure. MOFs therefore offer great potential for their effective integration and exploration in various sensing applications. MOFs can be put together arbitrarily like Lego bricks and outperform every previously known class of material in terms of flexibility.

Short history and Background of MOFs

The physicochemical properties of materials are governed by the synergistic effects of structures and compositions, and MOFs are fascinating examples of how the unique structure of hollow-structured materials can provide a whole raft of advantageous features. Among them are enhanced surface-to-volume ratio; low density; microreactor environment; higher loading capacities; and reduced transmission lengths of mass and charge.

Consequently, the preparation of hollow structures for technological applications has long been a popular research field for chemists and materials scientists. However, the synthesis of porous or hollow-structured materials with controllable – and especially complex – structures and certain composition in a controlled manner has always been a challenge for scientists.

Enter MOFs – crystalline hybrid materials created from both organic and inorganic molecules via molecular self-assembly. Pioneered in the late 1990s ("Design and synthesis of an exceptionally stable and highly porous metal-organic framework") by Prof. Omar Yaghi at UC Berkeley, MOFs have become a rapidly growing research field. So far, more than 90,000 different MOF structures have been reported and the number grows daily. Though exciting, the sheer number of MOFs is actually creating a problem: It researchers propose to synthesize a new MOF, how can they know if it is truly a new structure and not some minor variation of a structure that has already been synthesized? To address the issue, researchers are using machine learning to develop a 'language' for comparing two materials and quantifying the differences between them.

MOF Applications

Numerous applications in many fields are being developed that exploit MOFs' cage-like structure, such as gas storage and separation, liquid separation and purification, electrochemical energy storage, catalysis, and sensing. In addition to direct applications, MOFs have been used as unique precursors for the construction of inorganic functional materials with unparalleled design possibilities, such as carbons, metal-based compounds, and their composites.

Currently, carbonaceous materials are attracting much interest for their extensive applications including adsorption, catalysis, batteries, fuel cells, supercapacitors, and drug delivery and imaging. In addition, some sensors are also one of the important applications of carbonaceous materials, because they are closely related to human health.

There are varieties of approaches for the preparation of these carbon materials, but among them, directly carbonizing from organic precursors is the most frequently used method to prepare nanoporous carbons due to its flexibility and simplicity. These materials present certain drawbacks, though, such as low surface areas, disordered structures, and non-uniform sizes, which will greatly limit their applications. However, researchers found that carbon materials derived from metal-organic frameworks (MOFs) could overcome these limitations.

Doxorubicin

Doxorubicin, sold under the brand name Adriamycin among others, is a chemotherapy medication used to treat cancer. This includes breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and acute lymphocytic leukemia. It is often used together with other chemotherapy agents. Doxorubicin is given by injection into a vein.

Common side effects include hair loss, bone marrow suppression, vomiting, rash, and inflammation of the mouth. Other serious side effects may include allergic reactions such as anaphylaxis, heart damage, and tissue damage at the site of injection, radiation recall, and treatment-related leukemia. People often experience red discoloration of the urine for a few days. Doxorubicin is in the anthracycline and antitumor antibiotic family of medications. It works in part by interfering with the function of DNA.

Doxorubicin was approved for medical use in the United States in 1974. It is on the World Health Organization's List of Essential Medicines. Versions that are pegylated and in liposomes are also available; however, they are more expensive. Doxorubicin was originally made from the bacterium Streptomyces peucetius.

Medical uses

Doxorubicin is commonly used to treat some leukemias and Hodgkin's lymphoma, as well as cancers of the bladder, breast, stomach, lung, ovaries, thyroid, soft tissue sarcoma, multiple myeloma, and others. Commonly used doxorubicin-containing regimens are AC (Adriamycin, cyclophosphamide), TAC (taxotere, AC), ABVD (Adriamycin, bleomycin, vinblastine, dacarbazine), BEACOPP, CHOP (cyclophosphamide, hydroxydaunorubicin, vincristine, prednisone) and FAC (5-fluorouracil, adriamycin, cyclophosphamide). Doxil (see below) is used primarily for the treatment of ovarian cancer where the disease has progressed or recurred after platinum-based chemotherapy, or for the treatment of AIDS-related Kaposi's sarcoma.

Biosynthesis

Doxorubicin (DXR) is a 14-hydroxylated version of daunorubicin, the immediate precursor of DXR in its biosynthetic pathway. Daunorubicin is more abundantly found as a natural product because it is produced by a number of different wild type strains of Streptomyces. In contrast, only one known non-wild type species, Streptomyces peucetius subspecies cesius ATCC 27952, was initially found to be capable of producing the more widely used doxorubicin. This strain was created by Arcamone et al. in 1969 by mutating a strain producing daunorubicin, but not DXR, at least in detectable quantities. Subsequently, Hutchinson's group showed that under special environmental conditions, or by the introduction of genetic modifications, other strains of Streptomyces can produce doxorubicin. His group also cloned many of the genes required for DXR production, although not all of them have been fully characterized. In 1996, Strohl's group discovered, isolated and characterized dox A, the gene encoding the enzyme that converts daunorubicin into DXR.

By 1999, they produced recombinant dox A, a cytochrome P450 oxidase, and found that it catalyzes multiple steps in DXR biosynthesis, including steps leading to daunorubicin. This was significant because it became clear that all daunorubicin-producing strains have the necessary genes to produce DXR, the much more therapeutically important of the two. Hutchinson's group went on to develop methods to improve the yield of DXR, from the fermentation process used in its commercial production, not only by introducing dox A encoding plasmids, but also by introducing mutations to deactivate enzymes that shunt DXR precursors to less useful products, for example baumycin-like glycosides. Some triple mutants, that also over-expressed dox A, were able to double the yield of DXR. This is of more than academic interest, because at that time DXR cost about \$1.37 million per kg and current production in 1999 was 225 kg per annum.

More efficient production techniques have brought the price down to \$1.1 million per kg for the nonliposomal formulation. Although DXR can be produced semi-synthetically from daunorubicin, the process involves electrophilic bromination and multiple steps, and the yield is poor. Since daunorubicin is produced by fermentation, it would be ideal if the bacteria could complete DXR synthesis more effectively.

Mechanism of action

Doxorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of topoisomerase II, an enzyme which relaxes supercoils in DNA for transcription. Doxorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being released and thereby stopping the process of replication. It may also increase quinone type free radical production, hence contributing to its cytotoxicity.

The planar aromatic chromophore portion of the molecule intercalates between two base pairs of the DNA, while the six-membered daunosamine sugar sits in the minor groove and interacts with flanking base pairs immediately adjacent to the intercalation site, as evidenced by several crystal structures.

By intercalation, doxorubicin can also induce histone eviction from transcriptionally active chromatin. As a result, DNA damage response, epigenome and transcriptome are deregulated in doxorubicin-exposed cells.

2. Results and discussion

Characterization

The chemical structure of the Uio-67-doxorubicin was characterized with different analytical methods such as XRD, SEM & TEM.

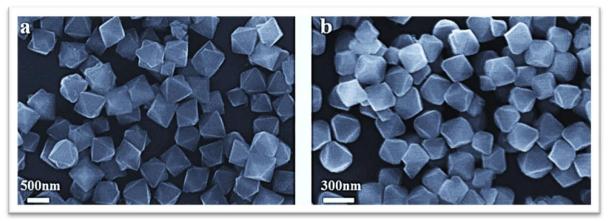


Fig6. TEM image of Uio-67-doxorubicin

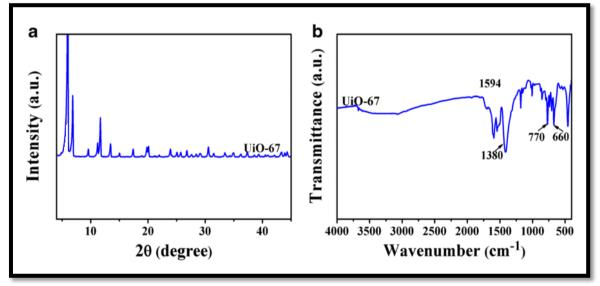


Fig7. (a) XRD and (b) FT-IR patterns for UiO-67.

www.ijeijournal.com

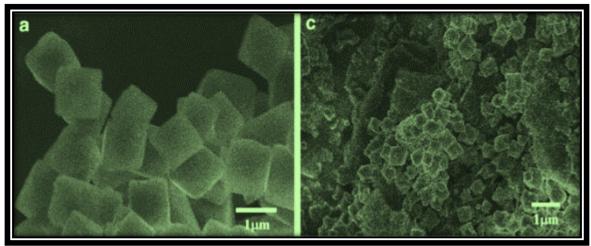


Fig8. SEM images of Uio-67 samples obtained doxorubicin: (a)Uio-67, (c) Uio-67- doxorubicin.



Fig 9.XRD patterns of the simulated UiO-67 and the synthesized UiO-67, UiO-67-MoO(O_2)₂, UiO-67-WO(O_2)₂, and UiO-67-KVO(O_2)₂. [29]

Drug loadings and release

The MOF- with the proper size and the accessible porosity could be used for loading and release of doxorubicin. The loading capacity of UiO-67 under physiological condition (pH 7.4) was investigated the results showed high drug loading capacity (DLC) (90%) and drug loading efficiency (DLE) 70% by UV-Vis spectroscopy. The results of release profiles of UiO-67-doxorubicin revealed sustained for 72 h despite with an initial rapid release.

Cytotoxicity assay

In order to determine the in vitro cytotoxicity of the UiO-67, doxorubicindrug, and UiO-67-doxorubicinHT-29 cell lines, MTT assay was conducted. The obtained results of the cell viability assay showed that UiO-67-doxorubicinand doxorubicindrug inhibited cell growth in a time and dose-dependent manner while the UiO-67-showed less growth inhibition after 48 h compared to drug loaded UiO-67and free drug doxorubicin. Based on

www.ijeijournal.com

this results, one may conclude that MOFs with low toxicity could be used effectively for biological applications in the future [3].

3. Conclusion

In this study, Uio-67 was applied for delivery of doxorubicin. The obtained nanostructure poses spherical morphology with an average diameter of 39-52 nm. Results showed the high loading capacity (90%) and sustained drug release behavior. Moreover, upon exposure by Uio-67-doxorubicin, higher cytotoxicity than those for Uio-67 and doxorubicin drug against PC3 cells was determined indicating Uio-67-doxorubicin may could be a promising anticancer drug delivery system in the future.

Outlook for MOFs

The numerous advantages of MOFs, foremost their high surface area and modular composition, place them at a multidisciplinary crossroads. For good reason, MOFs are one of the most active research fields today, with aspects of their fundamental and applied properties permeating into disciplines as varied as electronics, chemical engineering, and optics. Whereas this Outlook does not attempt to delineate the developments and potential in all these areas, we have introduced some of the exciting prospects related to continued synthetic advances in the field. We further elaborated on three applied areas where MOFs are primed to excel: in challenging gas separations, as porous electrical conductors, and in heterogeneous catalysis. These examples are not exhaustive, but present subtleties that are applicable and relevant to many other applications of MOFs. The challenges and opportunities in these select applications, which span both the traditional and the modern aspects of the field, are illustrative of the continually expanding interest and bright future for MOF chemistry.

References

- [1]. O. Zarei, F. Azimian, M. Hamzeh-Mivehroud, J. Shahbazi Mojarrad, S. Hemmati, S. Dastmalchi. Medicinal Chemistry Research 2020, 29, 1438-1448.
- [2]. S. Rojas, T. Devic, P. Horcajada. Journal of Materials Chemistry B 2017, 5, 2560-2573.
- [3]. B.-H. Song, X. Ding, Z.-F. Zhang, G.-F. An. Journal of the Iranian Chemical Society 2019, 16, 333-340.
- [4]. E. Tawfik, M. Ahamed, A. Almalik, M. Alfaqeeh, A. Alshamsan. Saudi Pharmaceutical Journal 2017, 25, 206-213.
- [5]. N.M. Mhaidat, M. Bouklihacene, R.F. Thorne. Oncology letters 2014, 8, 699-704.
- [6]. W. Cai, J. Wang, C. Chu, W. Chen, C. Wu, G. Liu. Advanced Science 2019, 6, 1801526.
- [7]. Song, Y., Chen, y., Xu, M., Wei, W., Zhang, Y., Yang, G., Ran, R., Wei, Z., & Zongping, S. (2020). "A Cobalt-Free Multi-Phase Nanocomposite as Near-Ideal Cathode of Intermediate-Temperature Solid Oxide Fuel Cells Developed by Smart Self-Assembly." Advanced Materials, 32(8), 1906979. https://doi.org/10.1002/adma.201906979
 [8]. Rane, A. V., Kanny, K., Abitha, V.K., & Thomas, S. (2018). "Methods for synthesis of nanoparticles and fabrication of
- [8]. Rane, A. V., Kanny, K., Abitha, V.K., & Thomas, S. (2018). "Methods for synthesis of nanoparticles and fabrication of nanocomposites. In S. M. Bhagyaraj, O. S. Oluwafemi & S. Thomas (Eds.), "Synthesis of inorganic nanomaterials (pp. 121-139). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101975-7.00005-1
- [9]. Lopez, N., Janssens, T.V.W., Clausen, B.S., Xu, Y., Mavrikakis, M., Bligaard, T., & Nørskov, J.K. (2004). "On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation". Journal of Catalysis, 223(1), 232-235. 10.1016/j.jcat.2004.01.001
- [10]. Hubbe, Martin A., et al. "Cellulosic nanocomposites: a review." BioResources 3.3 (2008): 929-980.
- [11]. Kornmann, Xavier, Henrik Lindberg, and Lars A. Berglund. "Synthesis of epoxy-clay nanocomposites: influence of the nature of the clay on structure." Polymer 42.4 (2001): 1303-1310.
- [12]. Fornes, T. D., and D. R. Paul. "Modeling properties of nylon 6/clay nanocomposites using composite theories." polymer 44.17 (2003): 4993-5013.
- [13]. Wagner, H. D., et al. "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix." Applied physics letters 72.2 (1998): 188-190.
- [14]. Gu, Dongdong, et al. "Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement." Scripta Materialia 67.2 (2012): 185-188.
- [15]. Fechete, Ioana, Ye Wang, and Jacques C. Védrine. "The past, present and future of heterogeneous catalysis." Catalysis Today 189.1 (2012): 2-27.
- [16]. Dabrowski, A. "Adsorption—from theory to practice." Advances in colloid and interface science 93.1-3 (2001): 135-224.
- [17]. Shahabuddin, M., et al. "A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes." Bioresource Technology 312 (2020): 123596.
- [18]. Khan, Faisal I., and Aloke Kr Ghoshal. "Removal of volatile organic compounds from polluted air." Journal of loss prevention in the process industries 13.6 (2000): 527-545.
- [19]. Rathje, William L., and Cullen Murphy. Rubbish!: the archaeology of garbage. University of Arizona Press, 2001.
- [20]. Gorse, Christopher, David Johnston, and Martin Pritchard. A dictionary of construction, surveying, and civil Engineering. Oxford University Press, 2012.
- [21]. Malamis, S., and E. Katsou. "A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms." Journal of hazardous materials 252 (2013): 428-461.
- [22]. Venkata Swaroopa Datta Devulapalli, Ryan P. McDonnell, Jonathan P. Ruffley, Priyanka B. Shukla, Tian-Yi Luo, Mattheus L. De Souza, Prasenjit Das, Nathaniel L. Rosi, J. Karl Johnson, Eric Borguet. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption. ChemSusChem 2022, 15 (1) https://doi.org/10.1002/cssc.202102217

- [23]. Amir Hossein Vahabi, Fataneh Norouzi, Esmaeil Sheibani, Mehdi Rahimi-Nasrabadi. Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coordination Chemistry Reviews 2021, 445, 214050. https://doi.org/10.1016/j.ccr.2021.214050
- [24]. Mustafa Kømurcu, Andrea Lazzarini, Gurpreet Kaur, Elisa Borfecchia, Sigurd Øien-Ødegaard, Diego Gianolio, Silvia Bordiga, Karl Petter Lillerud, Unni Olsbye. Co-catalyst free ethene dimerization over Zr-based metal-organic framework (UiO-67) functionalized with Ni and bipyridine. Catalysis Today 2021, 369, 193-202. https://doi.org/10.1016/j.cattod.2020.03.038
- [25]. Guihao Zhong, Dingxin Liu, Jianyong Zhang. Incorporation of Functional Groups Expands the Applications of UiO-67 for Adsorption, Catalysis and Thiols Detection. ChemistrySelect 2018, 3 (25), 7066-7080. https://doi.org/10.1002/slct.201800840
- [26]. Yuan, Shuai, et al. "Stable metal-organic frameworks: design, synthesis, and applications." Advanced Materials 30.37 (2018): 1704303.
- [27]. Chen, Liyu, et al. "One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program." Journal of Materials Chemistry A 3.29 (2015): 15259-15264.
- [28]. Qiu, Lu, et al. "Fluorinated phenylpyridine iridium (III) complex based on metal—organic framework as highly efficient heterogeneous photocatalysts for cross-dehydrogenative coupling reactions." Journal of Materials Science 55.22 (2020): 9364-9373.
- [29]. Hong, Yuechao, et al. "Transition metal oxodiperoxo complex modified metal-organic frameworks as catalysts for the selective oxidation of cyclohexane." Materials 13.4 (2020): 829.