e-ISSN: 2278-7461, p-ISSN: 2319-6491

Volume 12, Issue 2 [February, 2023] PP: 88-93

Crystal field parameters and zero field splitting parameter of Mn²⁺ doped CdGa₂S₄ single crystals

Ram Kripal

EPR Laboratory, Department of Physics, University of Allahabad, Allahabad-211002, India

Abstract

Using superposition model and the perturbation theory the crystal field parameters and zero-field splitting parameter of Mn^{2+} doped $CdGa_2S_4$ single crystals are calculated. The theoretical zero-field splitting parameter D is matches well with the experimental value obtained from EPR study. The present study supports the experimental EPR result that Mn^{2+} ions replace Cd^{2+} ions in $CdGa_2S_4$ single crystal. The optical energy values for Mn^{2+} ions at Cd^{2+} sites found using CFA package and crystal field parameters are in reasonable agreement with the experimental ones. Hence the theoretical study supports the experimental observation.

Keywords: A. Inorganic compounds; A. Single crystal; D. Crystal fields; D. Optical properties; D. Electron paramagnetic resonance.

Date of Submission: 10-02-2023 Date of acceptance: 21-02-2023

Date of Submission: 10-02-2023 Date of acceptance: 21-02-2023

I. INTRODUCTION

The microscopic spin-Hamiltonian (MSH) theory is frequently used for the study of crystals as the spin Hamiltonian parameters of transition ions (d^5) in crystals are quite sensitive to local distortions [1-3]. The spin Hamiltonian (SH) parameters obtained from electron paramagnetic resonance (EPR) can be correlated with optical and structural parameters of the crystals.

The crystal-field (CF) parameters of 3d⁵ Mn²⁺ ion may be determined employing superposition model (SPM) [4, 5]. The zero field splitting (ZFS) parameters can then be obtained with the help of CF parameters [6-10].

 $CdGa_2S_4$ shows the well known thiogallate structure of space group I 4 and belongs to the family of defect tetrahedral structures [11]. There is a great interest in ternary, tetrahedral compounds with reference to their nonlinear optical properties, semiconductivity, photoconductivity, the electronic energy band structure and the vibrational spectra [12, 13].

EPR study of Mn^{2+} doped $CdGa_2S_4$ single crystals [14] at room temperature (RT) has been reported [15]. In the present work, the CF parameters are determined employing SPM and these parameters with MSH theory yield ZFS parameter for Mn^{2+} ions at the axial symmetry site in $CdGa_2S_4$ single crystal at RT. The ZFS parameter D evaluated in this manner gives good match with the experimental value [14].

This section was dedicated to the brief introduction of the subject and objective of the work done. The remaining paper is organized as given below. Section II provides the related work associated with the SPM study. Section III presents the methods for calculating CF and ZFS parameters. Section IV gives the results and its discussion. Finally, section V describes conclusion of the study and future scope for improvement.

II. RELATED WORK

The SPM studies have been done for different ion-host systems [16-31]. The crystal structure of $CdGa_2S_4$ is tetragonal. The lattice parameters are a = 5.5492 Å, c = 10.1624 Å, Z = 2 [14]. The crystal structure belongs to

the space group I 4 . The S coordination around Cd^{2+} is shown in Fig. 1. The site symmetry around Cd^{2+} (Mn^{2+}) ions is considered to be axial, as shown by EPR study of Mn^{2+} : $CdGa_2S_4$ [14].

www.ijeijournal.com Page | 88

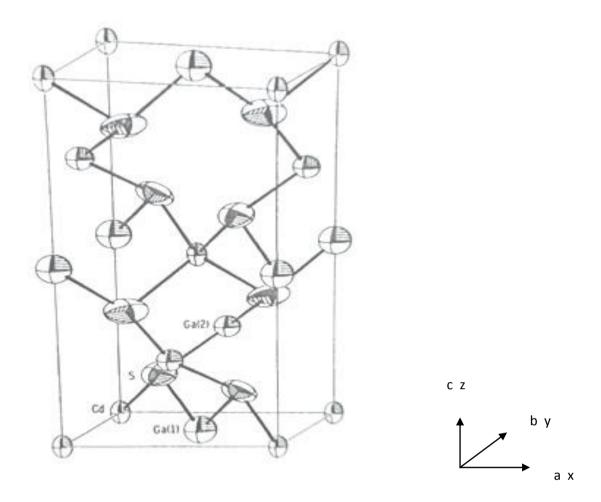


Fig. 1: Crystal structure of CdGa₂S₄ together with axes (SAAS-symmetry adopted axes system).

III. MATERIALS AND METHODS

The SH of 3d⁵ Mn²⁺ ion in crystal field of axial symmetr

$$\mathcal{H} = g \ \mu_{B}B.S + D\{S_{Z}^{2} - S(S+1)\}$$

$$+ \left(\frac{a}{6}\right)[S_{X}^{4} + S_{Y}^{4} + S_{Z}^{4} - \frac{1}{5}S(S+1)(3S^{2} + 3S - 1)]$$

$$+ A(I.S)$$
(1)

where the first term represents electronic Zeeman interaction, B is the applied magnetic field, g is the spectroscopic splitting factor and μ_B is Bohr magneton. The second and third terms give the second order axial and fourth-rank cubic ZFS terms [8]. The fourth term provides the hyperfine interaction term. S, D and a are the effective spin vector, second order axial and fourth-rank cubic ZFS parameters, respectively. The electronic Zeeman interaction is assumed to be isotropic for Mn^{2+} ions [8, 19, 20].

The Hamiltonian for a d⁵ ion is given as

$$\mathcal{H} = \mathcal{H}_{0} + \mathcal{H}_{CF} + \mathcal{H}_{SO}$$
where
$$\mathcal{H}_{CF} = \sum_{kq} B_{kq} C_{q}^{k}$$
(2)

is the crystal field Hamiltonian while \mathcal{H}_0 and \mathcal{H}_{SO} represent free ion Hamiltonian and spin-orbit (SO) coupling, respectively. Since the spin-spin coupling is very small [21-23], its effect is neglected in Eq. (2).

www.ijeijournal.com

The crystal field of SO interaction is taken as perturbation term [24-26]. The strong-field scheme calculation for F-state ions is given by Macfarlane [27]. The SO contribution to the ZFS parameter D for 3d⁵ ions in axial symmetry is given as [25]

$$\mathbf{D}^{(4)}(SO) = \left(\frac{\varsigma^2}{63P^2G}\right) [14\mathbf{B}_{44}^2 - 5\mathbf{B}_{40}^2] - \left(\frac{3\varsigma^2}{70P^2D}\right) \mathbf{B}_{20} [\mathbf{B}_{20} - 14\varsigma]$$
(3)

where P=7(B+C), G=10B+5C and D=17B+5C. P, G, and D are the energy separations between the excited quartets and the ground sextet. Racah parameters B and C represent the electron-electron repulsion. Only fourth order term is taken in Eq. (3) since other perturbation terms are very small [25, 27]. The parameters B, C and \mathcal{G} , in terms of the average covalency parameter N, are: $B=N^4B_0$, $C=N^4C_0$ and $\mathcal{G}=N^2\mathcal{G}_0$, where B_0 , C_0 and \mathcal{G}_0 are the Racah parameters and the spin-orbit coupling parameter for free ion [28, 29], respectively. $B_0=960~cm^{-1}$, $C_0=3325~cm^{-1}$, $\mathcal{G}_0=336~cm^{-1}$ [8] are taken here for free Mn^{2+} ion. Using equation

$$N = (\sqrt{\frac{B}{B_0}} + \sqrt{\frac{C}{C_0}})/2$$
(4)

N can be determined with the help of the values of Racah parameters (B = 648 cm^{-1} , C = 2475 cm^{-1}) found from optical study [30].

Using SPM the CF parameters for Mn^{2+} in $CdGa_2S_4$ single crystal are obtained and then from Eq. (3) ZFS parameter D is calculated. Similar method has been applied to find ZFS parameters by previous workers [31]. The SPM is effectively used to find the crystal-field splitting. It has also been used for $3d^n$ ions [27, 32]. The crystal field parameters B_{kq} , using this model, are evaluated from the equations [33]

$$B_{20} = -2\bar{A_2} \left(\frac{R_0}{R_{10} + \Delta R_1} \right)^{t_2} - 4\bar{A_2} \left(\frac{R_0}{R_{20} + \Delta R_2} \right)^{t_2}$$

$$B_{40} = 16\bar{A_4} \left(\frac{R_0}{R_{10} + \Delta R_1} \right)^{t_4} + 12\bar{A_4} \left(\frac{R_0}{R_{20} + \Delta R_2} \right)^{t_4}$$

$$B_{44} = 2\sqrt{70}\bar{A_4} \left(\frac{R_0}{R_{20} + \Delta R_2} \right)^{t_4}$$

$$(5)$$

$$(6)$$

where R_0 is the reference distance, normally taken as the average value of all four bond lengths (for axial symmetry). A_2 , A_4 and t_k are the intrinsic parameter and power law exponent, respectively.

IV. RESULTS AND DISCUSSION

The position of Mn^{2+} ion and spherical coordinates of ligands are given in Table 1. The average of two out of four Mn^{2+} - S^{2-} bond lengths are: $R_{10} = 0.2436$ nm and the average value of other two bond lengths are: $R_{20} = 0.2436$ nm. ΔR_1 and ΔR_2 are the distortion parameters. In tetrahedral coordination,

 $\overline{A_4}(R_0) = (-27/16)Dq$ [6]. For 3d⁵ ions $\frac{A_2}{\overline{A_4}}$ lies in the range 8-12 [27, 31]. The power law exponent for

 Mn^{2+} ion is taken as $t_2 = 3$, $t_4 = 7$.

www.ijeijournal.com

Table 1 Mn²⁺ion position and spherical coordinates of ligands R θ, φ in CdGa₂S₄ single crystal.

Position of Mn ²⁺ (Fractional)		Ligands	nds Spherical co-ordinates of ligands				
				R(nm)	θ_0	ф 0	
		x y (Å)	Z		(deg	ree)	
Site : Substitutional	S(1) 0	0.2585 0.251	3 0.1368	0.2436	55.2	44.2	
Cd (0, 0, 0)	. ,	-0.2585 -0.2			55.2		44.2
	S (3)	0.2513 -0.2	585 0.136	8 0.2436	55.2	-45.8	
	S (4)	-0.2513 0 .2	2585-0.136	8 0.2436	124.7	-45.8	

The values of B, C and Dq are obtained from optical study [30] as 648, 2475 and 810 cm⁻¹, respectively. First

The values of B, C and Dq are obtained from option and $\frac{\overline{A_2}}{\overline{A_4}} = 10$ and $R_0 = 0.211$ nm,

which is slightly smaller than the sum of ionic radii of $Mn^{2+} = 0.083$ nm and $S^{2-} = 0.184$ nm, the B_{kq} parameters are found as: $B_{20} = 53283.0 \text{ cm}^{-1}$, $B_{40} = -13991.8 \text{ cm}^{-1}$, $B_{44} = -8361.7 \text{ cm}^{-1}$ and the value of D as: $|D| = 8095.2 \times 10^{-4} \text{ cm}^{-1}$. The experimental value of D from EPR is: $|D| = 225.3 \times 10^{-4} \text{ cm}^{-1}$ [14]. Thus it is noted that the theoretical value is quite larger than the experimental one.

Further, taking local distortions as $\Delta R_1 = -0.1720$ nm and $\Delta R_2 = -0.1714$ nm, $R_0 = 0.211$ nm and $\frac{A_2}{A_4} = 10$,

the B_{kq} parameters are obtained as shown in Table 2 and the value of D as: $|D| = 225.2 \times 10^{-4}$ cm⁻¹, in good match with the experimental value: $|D| = 225.3 \times 10^{-4} \text{ cm}^{-1}$. Using B_{kg} parameters and CFA program [34-35], the optical energy values of Mn²⁺ doped CdGa₂S₄ crystals are calculated. The energy levels of Mn²⁺ ion are calculated by

Table 2. Crystal field parameters and zero field splitting parameter of Mn²⁺ doped CdGa₂S₄ single crystal.

		Crysta	al- field paramete	Zero-field splitting parameter (10 ⁻⁴ cm ⁻¹)		
ΔR_1 (nm)	ΔR_2 (nm)	R ₀ (nm)	B ₂₀ B ₄₀	B ₄₄	D	
-0.1720 0.0000	-0.1714 0.0000	0.211 1076 0.211 5328		-200818 -8361.7	225.2 8095.2 Exptl. 225.3	

diagonalizing the complete Hamiltonian within the 3dN basis of states in the intermediate crystal field coupling scheme. The calculated energy values are presented in Table 3 (input parameters are given below the Table) together with the experimental values [29] for comparison purpose. It can be noted from Table 3 that there is a reasonable agreement between the calculated and experimental energy values. The energy values obtained without distortion were much different from the experimental ones and hence are not given here. Thus the theoretical study supports the experimental results.

Table 3. Experimental and calculated (CFA package) energy band positions of Mn²⁺ doped CdGa₂S₄ single crystal.

Transition f	rom		
$^{6}A_{1g}(S)$	Observed	Calculated	
	energy	energy	
	bands	bands	
	(cm^{-1})	(cm^{-1})	
		With distortion	

Page | 91 www.ijeijournal.com

$^{4}T_{1}g(G)$	17244	18485, 18503,	
_		18624, 18703,	
		18735, 18800	
$^{4}T_{2}g(G)$	20196	19322, 19526,	
_		20115, 20151,	
		20211, 20303	
$^{4}Eg(G)$	21519	20394, 20400,	
		20413, 21940	
$^{4}T_{2}g(D)$	23374	22539, 22577,	
_		22645, 22721,	
		23839, 23911	
⁴ Eg(D)	25576	25348, 25471,	
		25580, 25673	

Input parameters: Numbers of free ion parameters = 5, number of d shell electrons = 5, number of fold for rotational site symmetry = 1; Racah parameters in A, B and C, spin-orbit coupling constant and Trees correction are 0, 648, 2475, 336 and 76 cm⁻¹, respectively; number of crystal field parameters = 3; B₂₀, B₄₀, B_{44} are taken from Table 2, spin-spin interaction parameter, M0 = 0.2917; spin-spin interaction parameter, M2= 0.0229; spin-other-orbit interaction parameter, M00 = 0.2917; spin-other-orbit interaction parameter, M22 = 0.0229; magnetic field, B = 0.0 Gauss; angle between magnetic field B and z-axis =0.00 degree.

V. CONCLUSION AND FUTURE SCOPE

Crystal field parameters and Zero-field splitting parameter D for Mn²⁺ in CdGa₂S₄ single crystal have been determined with the help of superposition model and perturbation theory. The theoretical D agrees well with the experimental value when distortion is taken into consideration. The theoretical study suggests that Mn²⁺ ion replaces Cd²⁺ site which supports the experimental EPR results. The CF energy values for Mn²⁺ ions at Cd2+ sites calculated using CFA package and CF parameters show reasonable agreement with the experimental values. Thus the theoretical investigation supports the experimental observation. Modeling approach employed in the present study may be applied in future to other ion-host systems for correlating EPR and optical data.

ACKNOWLEDGEMENT

The author is thankful to the Head, Department of Physics for giving the departmental facilities and to Prof. C. Rudowicz, Faculty of Chemistry, A. Mickiewicz. University, Poznan, Poland for CFA program.

References

- [1] C. Rudowicz, S. K. Misra, Appl. Spectrosc. Rev. 36 (2001)11-63.
- [2] Z.Y. Yang, Y. Hao, C. Rudowicz, Y.Y. Yeung, J. Phys.: Condens. Matter, 16 (2004) 3481-3494.
- [3] P. Gnutek, Z. Y. Yang, C. Rudowicz, J. Phys.: Condens. Matter, 21 (2009) 455402-455412.
- [4] S. K. Misra in: Handbook of ESR (Vol.2), eds. C. P. Poole Jr., H. A. Farach, Springer, New York, 1999, Chapter IX, p. 291.
- [5] H. Anandlakshmi, K. Velavan, I. Sougandi, R. Venkatesan, P. S. Rao, Pramana, 62 (2004)77-86.
- [6] S. Pandey, R. Kripal, A. K. Yadav, M. Açıkgöz, P. Gnutek, C. Rudowicz, J. Lumin.. 230 (2020) 117548 (9 pages).
- [7] I. Stefaniuk, Opto-Electronics Rev. 26 (2018) 81-91.
- [8] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1970.
- [9] D. J. Newman, B. Ng (Eds.), Crystal Field Handbook, Cambridge University Press, Cambridge, 2000.
- [10] T. H. Yeom, S. H. Choh, M. L. Du, J. Phys.: Condens. Matter 5 (1993) 2017-2024. [11] E.Parthé, Cristallochimie des structures tétraédriques. New York, Gordon and Breach, 1972
- [12] A. Miller. A. MacKinnon, and D. Weaire, Sol. State Phys. 36 (1981) 119-175
- [13] A. MacKinnon, in: Festkörperprobleme XXI, ed. J. Treusch, Vieweg, Braunschweig 1981.
- [14] B. Frick, D. Siebert, Z. Naturforsch. 37 a (1982) 1005.
- [15] V. Krämer, B. Frick, D. Siebert, Z. Kristall. 165 (1983) 151-157.
- [16] M. G. Zhao, M. L. Du, G. Y. Sen, J. Phys. C: Solid State Phys. 18 (1985)3241-3248
- [17] W. L. Yu, Phys. Rev. B 39 (1989) 622-632.
- [18] Z. Y. Yang, J. Phys.: Condens. Matter 12 (2000) 4091-4096.

Page | 92 www.ijeijournal.com

Crystal field parameters and zero field splitting parameter of Mn^{2+} doped $CdGa_2S_4$ single crystals

- [19] D. J. Newman, B. Ng, Rep. Prog. Phys. 52 (1989) 699-763.
- [20] W. L. Yu, M. G. Zhao, Phys. Rev. B 37 (1988) 9254-9267.
- [21] Z. Y. Yang, C. Rudowicz, Y. Y. Yeung, Physica B348 (2004) 151-159.
- [22] C. Rudowicz, H. W. F. Sung, Physica B 300 (2001) 1-26.
- [23] C. J. Radnell, J. R. Pilbrow, S. Subramanian, M. T. Rogers, J. Chem. Phys. 62(1975)49484952.
- [24] J. A. Weil, J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, second ed., Wiley, New York, 2007.
- [25] W. L. Yu, M. G. Zhao, J. Phys. C: Solid State Phys. 18 (1984) L525-L528.
- [26] J. F. Clare, S. D. Devine, J. Phys. C: Solid State Phys.17 (1984) L581-L584.
- [27] R. M. Macfarlane, J. Chem. Phys. 47 (1967) 2066-2073; Phys. Rev. B 1(1970) 989-1004.
- [28] M. H. L. Pryce, Phys, Rev. 80 (1950) 1107.
- [29] R. R. Sharma, R. Orbach, T. P. Das, Phys. Rev. 149 (1966) 257-269.
- [30] T. T. Q. Hoa, N. D. The, S. McVitie, N. H. Nama, L. V. Vu, T. D. Canh, N. N. Long, Opt. Mater. 33 (2011) 308-314.
- [31] W. L. Yu, M. G. Zhao, Phys. Stat. B 140 (1987) 203-212.
- [32] Y. Y. Yeung, "Superposition model and its applications, in: Optical Properties of 3d-Ions in Crystals, Spectroscopy and Crystal Field Analysis (Chapter 3, pp.95-121)", M. G. Brik and N. M. Avram (Eds.), *Springer*: Heidelberg, New York, Dordrecht, London, 2013.
- [33] Q. Wei, Acta Phys. Polon. A 118 (2010) 670-672.
- [34] Y. Y. Yeung, C. Rudowicz, J. Comput. Phys. 109 (1993) 150-152.
 [35] Y. Y. Yeung, C. Rudowicz, Comput. Chem. 16 (1992) 207-216.

Page | 93 www.ijeijournal.com