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Abstract. In this research work, a mathematical model for an unsteady, magnetohydrodynamic (MHD)
non-Newtonian blood flow, through porous blood vessels, using an oscillatory harmonic pressure gradient
to describe the dynamic of blood flow during surgery was studied. Blood was modeled as a fourth
grade non-Newtonian fluid. The governing model equation was solved semi analytically, using modified
homotopy perturbation method (MHPM) with the help of MATHEMATICA SOFTWARE to
simulate the velocity profile. The MHPM, was based on the application of Laplace transform
combined with the homotopy perturbation method (HPM). The effect of magnetic field, porosity, body
acceleration, pressure gradient, third and fourth-grade non-Newtonian fluid parameters and Womerseley
parameter on the flow behavior velocity was examined. The main important results obtained are; the
velocity of the blood decreases as the value of both the parameters representing the magnetic field,
porosity, and third grade non-Newtonian fluid increases. Also, the velocity of the blood increases as the
value of body acceleration, pressure gradient and fourth grade non-Newtonian fluid parameter
increases.
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l. Introduction

The study of bio-fluid dynamics has become quite interesting to many researchers from theoretical, exper-
imental as well as clinical point of view (Mandal, Mukhophadhyay & Layek, 2012). Blood is considered
to be one of the most important multi-component mixture in nature that delivers necessary substances
such as nutrient and oxygen from one body cell to the other body cells through arteries and veins (Ak-
barzadeh, 2012). Blood is composed of plasma (contain water, glucose, dissipated protein, mineral ion,
hormones, and carbon dioxide), blood cells (red blood cells, white blood cells and platelets) Srivasta,
(2014). Blood is considered as either Newtonian or non-Newtonian fluid but it depend on the hypothesis
(Morales, Larrabide, Geers, Aguilar, Martha & Alejandro, 2013). Many researchers had studied blood
flow in an artery, by considering blood as a Newtonian fluid. Among the researches conducted are (see
Das & Saha, 2009; Jain, Sharma & Singh, 2009; Mariamma & Majhi, 2000; Shit & Roy, 2011; Tanwar,
Varshney & Agarwal, 2016), all were confined themselves to Newtonian blood flow models by considering
Navier Stoke’s equation in describing blood flow problem. Blood as whole behaves as a non-Newtonian
fluid, it is commonly accepted that the hematocrits (the volume percentage of red blood cells in blood
which is normally 45% for men and 40% for women), exhibit shear thinning behavior, and for this reason
blood can be modeled as a non-Newtonian fluid Akbarzadeh, (2012). Using non-Newtonian model to
describe the rheological characteristics or behavior of blood can be found in the work of (Majhi & Nair,
1994; Massoudi & Phuoe, 2008; Mosayebidorcheh, Hatami & Ganji, 2016; Ponalagusamy & Privad-
harshini, 2017; Tan & Masuoka, 2005) and so forth.

www.ijeijournal.com Page | 86


http://www.ijeijournal.com/

Development of Mathematical Modeling Using the Application ofLocal Magnetic Field to ..

The study of hemodynamics and hemorheology, particularly on flow of blood through an artery with
the application of magnetic field has drawn the attention of many researchers for a long time due to its
great importance in medical sciences. The idea of electromagnetic fields in medical research was firstly
given by Hartmann (1937) and later Korchevskii and Marochnik discussed the possibility of regulating
the movement of blood in human system by applying magnetic field. Blood can be regarded as magnetic
fluid, in which red blood cells are magnetic in nature. Liquid carriers in the blood contain the magnetic
suspension of the particle. Human hody experiences magnetic fields of moderate, to high intensity in
many situations of day to day life. Scientists are using magnetic field in controlling the flow of blood
during surgery. For this reason, the use of application of bio magnetic fluid dynamics in blood flow is
very important, more especially in dealing or treatment of some cardiovascular diseases. As reported
in Sharma & Nasha, (2013), scientists are using magnetic field in controlling the flow of blood during
surgery. For this reason the application of magnetohydrodynamic (MHD) in physiological problem is of
growing interest (Cherry & Eaton, 2014). The blood consist of a suspension of red blood cells containing
hemoglobin, which contain iron oxide, it is quite apparent that blood is an electrically conducting fluid,
and exhibit (MHD) flow characteristics (Eldabe, Agoor & Alame, 2014). Agarwal et el. (2014) devel-
oped a mathematical model to study the (MHD) oscillatory blood flow through stenosed artery under
the effect of slip velocity, the blood was assumed to be Newtonian. Analytical expression for velocity
profile, flow rate, wall shear stress and resistive impedance have been ohtained.
Jamil et el. (2018) Studied the unsteady Newtonian blood flow in the stenosed porous artery subjected
to a magnetic field. Oscillating pressure gradient and periodic body acceleration were imposed on the
flow field. The governing non-linear partial differential equation that governed the flow problem was
solved analytically using a regular perturbation method.
Cedril et.al (2021) studied the stability analysis of non-Newtonian blood flow, conveying hybrid magnetic
nanoparticles as largest drug delivery in presence of inclined magnetic field, and thermal radiation with
application for cancer diagnosis, and therapy as magnetic nanoparticles can be used as a therapeutic
agent in presence of thermal radiation, and an inclined magnetic field. The model governing equation of
the flow problem was solved numerically by the spectral collocation method.
Jamil et.al (2021) studied the analysis of non-Newtonian magnetic blood flow in an inclined stenosed
artery. The Casson fluid was used to model the blood that flows under the influences of uniformly dis-
tributed magnetic field and oscillating pressure gradient. The governing fractional differential equations
were expressed using the Caputo Fabrizio fractional derivative without singular kernel.
Adrian et.al (2022) investigated the effect of non-Newtonian bio magnetic power law fluid in a channel
undergoing external localized magnetic fields. The governing equations are derived by considering both
the effect of Ferro hydrodynamic (FHD) and Magneto hydrodynamic (MHD).

One of the significant factor that affect the flow of blood is pressure gradient. Under normal condition,
blood flow in the human circulatory system is caused by the pumping action of the heart (Uddin, Mo-
hamad, Kamardan, Hakim, Sufahani & Rozaini, 2019). The heart is a muscular organ in humans and
other animals, which produce a pulsatile pressure gradient throughout the system (popularly known as
a pressure pulse which physicians check at the wrist) (Jamil, Roslan, Abdulhameed, Che-Him, Sufahani,
Mohamad, & Kamardan, 2008). Thus, several researchers have made excellent studies on pulsatile flow
of blood in a blood vessels. Some of these studies can be found in (Chaturani & Palanisamy, 1991; Majhi
& Nair, 1994; Siddique & Awasthi, 2017; Siddique, Verma, Mishra & Gupta, 2009). For instance, Das et
al. (2009) observed and investigate a mathematical model for pulsatile flow of blood through a stenosed
porous medium with periodic body acceleration under the influence of a uniform transverse magnetic
field by considering the blood to be a Newtonian and incompressible fluid. The governing equations that
described the problem are solved analytically using the finite Hankel and Laplace transform.

Shit et al. (2011) investigated the study of pulsatile blood flow through a constricted porous channel
in the presence of an external magnetic field by considering blood as an incompressible Newtonian fluid
model. A perturbation method was employed to solve the governing differential equation.

Eldesoky (2012) developed a mathematical model to study the unsteady pulsatile flow of Newtonian
blood flow through a porous medium in a time dependent constricted porous channel subjected to time
dependent suction \ injection at the walls of the channel. The blood flow was subjected to a constant
transverse magnetic field. Perturbation analysis is used to solve the systems of equations governing the
flow.
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The flow properties of non-Newtonian fluids are quite different from Newtonian fluids. Therefore, the
main distinguishing features of many non-Newtonian fluids is that, they exhibit both viscous and elastic
properties, and the relation between the shear stress and rate of shear are non-linear (Larson 1999). The
non-Newtonian fluids exhibit numerous strange features such as shear thinning, shear thickening and
display elastic effect. These non-Newtonian fluids have been modeled by different constitutive equations
that vary greatly in complexity (Rajagopal, 1995). Therefore, because of the complex diversity in the
physical structure of non-Newtonian fluids, there is no single constitutive equation in the literature that
capture all the flow properties of non-Newtonian fluids. For this reason various rheological models have
heen proposed in order to describe the non-Newtonian flow behavior. These rheological models are clas-
sify under the following type; rate type, differential type, and integral type (Akbarzadeh, 2016; Rivlin,
1955). Amongs all these types, fluids of differential type have received special attention from different
researchers (Hatami & Ganji, 2014; Rajagopal, 1995), to describes the several non-Newtonian flow be-
havior. Therefore due this, fluid of differential type have became the subject of many investigations
covering various facets, for example thermodynamical aspect (Ellahi & Riaz, 2010; Hatami & Ganji,
2014; Majhi & Nair, 1994: Massoudi & Phuoe, 2008) etc. For instance Majhi et el. (1994) employed a
mathematical model for pulsatile blood flow, subjected to externally imposed periodic body acceleration,
by considering blood as a third grade non-Newtonian fluid, where the effect of the body acceleration on
the velocity, flow rate and the wall shear stress were also obtained.

Hatami et el. (2014) studied the heat transfer and flow analysis for a non-Newtonian third grade nanofluid
flow in a porous medium of a hollow vessel in the presence of a magnetic field. Blood was considered as
the third grade non-Newtonian fluid and gold nanoparticles (A, ) are added to it.

Abdulhameed et el. (2014) studied the unsteady flow of a non-Newtonian fluid in a metallic wire coating
process inside a cylindrical roll die. The constitutive equation of the fluid is modeled for a fourth grade
non-Newtonian fluid with non homogeneous boundary condition. Analytical solution for the axial veloc-
ity field have been obtained in an explicit form by modified homotopy perturbation transform method
(MHPTM).

Akbarzadeh (2016) studied the unsteady MHD blood flow through porous arteries concerning the in-

Huence of externally imposed periodic body acceleration and a periodic pressure gradient. Blood was
considered as a third grade non-Newtonian fluid. The governing equation that deseribed the How problem
was solved numerically using a finite difference technique and analytically using a regular perturbation.
Ponalagusamy (2017) studied the pulsatile flow of Herschel-bulkley fluid through a bifurcated arterial
stenosis in a porous medium with magnetic field and periodic body acceleration. The governing equa-
tions involving the shear stress were solved numerically using finite difference schemes.

The most interesting and important task that we need to address when dealing with the flow problems
of non-Newtonian fluids is that, the governing equations of those models are non linear, and much more
complex as compared with Newtonian fluids models. As a result of the non-linearity in the models of
non-Newtonian fluids, the exact solutions of those problems are very difficult to obtain. Due to these,
numerical and approximate analytical techniques (semi-analytical) have been proposed to handle such
difficulties. Some of these techniques can be found in work reported in (Abdulhameed, Roslan & Bin
Mohamad, 2014; Jamil, Roslan, Abdulhameed & Hashim, 2018; Massoudi & Phuoc, 2008).

The motivation of this research is to develop a mathematical modeling using the applieation of local
magnetic field to describe the dynamic of blood flow in an artery during surgery. In this present study,
we intend to broaden the work Akbarzadeh, (2016) to study the more general problem by incorporating
the local magnetic field. Furthermore, the pulsatile flow is studied by considering into account a periodic
pressure gradient. Also, to considered the generalized form of fluid of differential type which is (Fourth-
grade fluid model). The fourth grade non-Newtonian fluid is one of the sub-class of fluid of differential
type that deseribe the rheological behavior of fluid such as shear thinning, shear thickening and vis-
coelasticity, which are characteristics of non-Newtonian fluids. The semi-analytical method (homotopy
perturbation transform method) is employed to solved the strongly non-linear governing equation. Con-
sequently, analytical expression for the velocity profile was obtained. The result of modified homotopy
perturbation transform method is compared with the existing result available in the literature to check
the validity and effectiveness of the present study. In addition, the effect of some of the studied governing
parameters in the model such as pressure gradient, porous medium, fourth grade fluid and local magnetice

field on the velocity profile are examined.
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I1. Problem Formulation

In this study, we consider the problem of unsteady, pulsatile, laminar flow of an incompressible non-
Newtonian blood flow, through a porous blood vessel or artery, in the presence of magnetic field and
body acceleration. Blood is modeled as a fourth grade non-Newtonian fluid. Also, for the mathematieal
model of the problem, we considered an artery to be a long cylindrical tube with coordinates (r, 6, z),
where 7, 2 denotes the radial and axial coordinates and 8 is the azimuthal. In this problem, blood flows
in the 2-direction through a tully porous vessel of radins R with an axial velocity of V' = (0,0, u(r,t)).
The flow is assume to be stable and axisymmetric, with no radial and azimuthal component of veloeity.
It is suppose that there is no slip condition (u = 0) on the outer wall (r = I?). The schematic diagram
of the problem is depicted in below figure.
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Fig 32.1: Schematic diagram of the flow through a porous medium with the application of
magnate hydrodynamic (MED)
2.1 Pressure Gradient
In human being blood flow is driven by the pressure gradient %-;1, produced by the pumping action of

the heart. Since blood flow in a human circulatory system is in general pulsatile, the pressure gradient
component is assumed to be given as reported in the work of Abdulhameed, Vieru, Roslan & Shafie,

(2015) as follow

—% = Po + P cos(wpt), (1)
where Fy is the constant or steady state part of the pressure gradient, Py is the amplitude or the oscilla-
tory part of the pressure fluctuation giving rise to systolic and diastolic pressure, w;, = 27 f, is the heart
pressure frequency, f, is the pulse rate frequency.

2.2 Body Acceleration
The body acceleration G is assumed to be given by a harmonic formula as follows
G(t) = Py cos(wgt + ), (2)

where F, is the amplitude or oscillatory part of the body acceleration, w, = 27 f, is the frequency and
i is the lead angle of the body aceeleration with respect to the pressure gradient or heart action.

2.3 Magnetic Field

In this study, we consider the Maxwell's equation and generalized Ohm’s law appropriate to describes
the How problem with the effect of magnetic field as reported in many studies such as (Eldesoky, 2012;
Rossow, 1958; Verma & Parihar, 2009).

V.B=0, V x B = piJ, VxE:—%, (3)
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J=0(E+V xB), (4)

where V' = (0,0,u), J, pn, E, 0, B are velocity, current density, magnetic permeability, electric field,
electric conductivity, and total magnetic field respectively. The total magnetic field B may be written
as

B =B +b, (5)
where By is the applied magnetic field due to external eurrent, and b is the induced magnetic field due
to induced current in the fluid (see Rossow 1958). As reported in rossow (1958), b < By hence b can be
neglected comparing to By, which lead to

B = B,. (6)

For small magnetic Reynold number, the linearized magnetohydrodynamic force J x B ean be expressed
as

JxB=ad(E+V x By) x By = —0B2u. (7)

2.4 Constitutive Equation for a Fourth Grade non-Newtonian
Fluid

Constitutive equation for a fourth grade fluid model is a relation between the stress and the local
properties of a fluid, which is used to deseribe the rheological characteristies or behavior of the fluid. It
is one of the popular subclass of differential type non-Newtonian fluid model. The shear stress tensor for
an axisymmetrie, incompressible non-Newtonian fourth grade fluid as reported in Abdulhameed, (2014)
was given in form of

4
e = —pl +) 5, (8)
i=1
where S;, are the other stress tensors defined by
Sl = ,(!-_4.1\ (9)
Sy = ay A + A2, (10)
Sg = 51_4.3 + ,-‘32(_41_4.2 + 1-121-11) + ,-'33(31"‘.4.%)‘4.1. (11)
Sy = mAs+7e (AgAl + ‘4.11-‘13) + ’}'3_4.% + ’}‘4(_4.2_4.% + AEAQ) + Vs [T.'J“'Ag 1A
+  a(trdg) A2 4 [yrtrdas + ystr(AgA;)]A;. (12)

where p is the pressure, I is the identity tensor, p is the dynamic viscosity and o; (i = 1,2) are the
material constants for second grade fluid, 3; (i = 1,2, 3) are the material constants for third grade fluid,
i (i = 1—8) are the material constants for fourth grade fluid. A4,, 45, A5 and A, are the Rivlin Ericksen
tensors which maybe defined through the following equations (Ellahi & Riaz, 2010)

Ay = (VV)+ (VW) (13)

A, = %(_4n_1) + A (V) + (VW Ay, > L (14)
We assume that the velocity field is unidirectional, the axial velocity of blood is expressed as
Vir t) = (0,0,u(rt)). (15)
Based on the assumption made in equation (15), we ecompute the coefficient of equation (8) as follow

i")u) 2 92

Tr. = —0I + [0 + 25, 0uy® E)-u+ Ot +2(3v2 4+ 73+ + s+ 37 + 1s) (16)
Trz = —P Ko 2P3 - T2+ U3 T a5 7 B\ a7 ) Brar

ar or " arot?
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2.5 Momentum Equation

The momentum equation for an incompressible, unsteady, laminar, axisymmetric and fully developed
fourth grade nen-Newtonian blood flow, through a porous blood vessels in the presence of magnetic field,
and oscillatory pressure gradient can be expressed as (Akbarzadeh, 2016)

du dp 14 o

Pt = "; trp Ul m Ut I B (17)

Substituting equations (1), (2), (7) and (16) into equation (17) we get
A 14d u ou\?
- = 08 05w P R 428
P o Fy + Py(coswpt) + P, cos(w,t + @) + prowll LA (,ud + 2533 (dr )}
o

+ L O +2(3v2 +va+ v+ s + 3+ s) ou*
— |7 - ¥ s T s — -
ror N orars 2T Is T TS I or ) oror
‘; u — o By’u (18)
Now, by introducing the following dimensionless parameters as follows;
| _ Wt 2wt
-Fz%zb'-r:-FR = {sz'u_ubo tZQ_};r:}t:T:' (19)

where, Uy denotes the reference velocity. Substitute the dimensionless quantities given in equation (19)
into an equation (18), the non-dimensional form of the momentum governing equation after dropping
bars for simplicity, leads to the following relation:

a 10u 92
22l = By (1 + ecos2wt) + By cos(2mwt + ) + {— - u}

ot ror T o
+ A 1 @ 3+3 @ 2@ e 1 S Ay
r \ Or dr | or? r drdta Dr2os

N ou\? 9%u N ou\? Pu 4o ou\ Pu 9?u
X \o\or) arae " \ar) ar2ae "\ ar ) a2 oron
- (P+ ﬂ-fz}u. (20)
after nammg some of the parameters as follows;
/ 72
o? = PR #‘" is the Womersley number, B, = ‘Z 0[},:;2 is the pressure gradient parameter, A = %’gﬂ is
2
the third grade non-Newtonian parameter, P = o}? is the porosity parameter, M? = ﬁﬁi is the

Wo s . calwin)? w
magnetic parameter, e = gl, and w = 22 is the frequency ratio, 7, = 2220 and y, = “’*’—[05}1 where
“p

(2
_ 203vo+yatvatys 319 +ys) Un® R?
2 R2
The clomam is 0 < r < 1, and boundary condition in dimensionless form that enable to solve equation
(20) is given as follows;

~

(r = 1), u=0,

r = o), du

o = (21)

It should be noted that, the Womersley number (a2) is a dimensionless parameter in a bio-fluid mechanics.
It is a dimensionless expression of the pulsatile low frequency in relation to viscous effect. Since the
vessels diameter in the human body differ up to three orders of magnitude, the Womersley number will
depend predominantly on diameter (Akbarzadeh, 2016). The Womersley number of human blood flow
has been estimated as according to Table 1.

Table 1: Womersley numbers in different human blood vessels (Fung, 1997)

Blood vessel Diameter(mm) a?
Ascending aorta 25 | 132
Descending aorta 23.3 | 115
Abdominal aorta 19.5 8
Femoral artery 12.9 3.5
Arterioles 1.37 | 0.04
Capillaries 0.48 | 0.005
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3  Algorithm of Modified Homotopy Perturbation Method

Modified homotopy perturbation method (MHPM) is a combine form of the Laplace transform with the
homotopy perturbation method HPM. The MHPM help in finding the solutions of non-linear differential
equations, integral equations, fractional differential equations without any discretization or restrictive
assumptions as reported in (Khan & Wu, 2011). To solve the strongly non linear differential equations,
MHPM will be applied. Below, we give a summary of MHPM procedure as outlined in the report in (Ab-
dulhameed, Roslan & Bin Mohamad, 2014). Consider a general nonlinear non-homogenous differential
equation of the form

Afu(r.t)) = g(r) r =0, t>0. (22)

Generally speaking, A is a differential operator which can be decomposed into linear parts L, @) and non-
linear part N. The operator L is the second order linear differential operator, ) is the linear differential
operator of less order than L, and g(r) is a source term. Therefore, equation (22) can be rewritten as
follow:

L{u(r,t)) + Qu(r,t)) + N(u(rt)) = gl(r). (23)
Based on homotopy perturbation idea as reported in Khan & Wu, (2011), we construct a homotopy as
follow:

L(u(r,t)) + ¢Q(u(r,t)) + ¢N(u(r,t)) = g(r). (24)

Considering the linear operator L, @ in (23), the concept of homotopy perturbation method with em-
bedding parameter ¢ € [0,1] is used to generate a series of expansion for L and @ as reported in Khan &
Wu, (2011) as follows:

L{u(r,t)) + Q(u {Zq wi| +0Q |i2q uz} , where u; = u;(r, ). (25)
L |i§:q";u{| +@Q iqiu{| = L(ug) +q1£-(151)+---+Q(uo}+q1Q(u1}+..., (26)
i=0 i=0

for the non linear operator N in equation (23), we generate the He's polynomial H, Abdulhameed,
Roslan & Bin Mohamad, (2014) as follows:

=Y _a"Hu(u). (27)
n=>0
Zq”Hﬂ (u) = Ho(u) + qHy(u) + ¢>Holu) + ..., (28)
where the He's polynomials H,, are defined as
Ld -
H,(u)= A {Zq uz} D, n=0,12 .., (29)
q_

(see Ghorbani, (2009)) for more details. The first few component of He's polynomials, for example are
given by

Ho(u) = N(uo),

d [
Hl(u) = d—(.}i\r |i qz'lt.{| 3
i=0 g=0

2
. (30
Haluw) = 2' dqz { ! 4 ' |
=0 q=0
L& S
Ha(u) = 3] d{] |i qzuzj| .
i=0 q=0
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Substituting equation (25) and (27) into (24) we have

L {iqiui} +Q
i=0

Taking the Laplace transform of both sides of equation (31) we obtained

iq“lui} + iq”lHq; =g(r). (31)

i=0 i=0

‘-’{L {Zqivi }+€{Q {Zq”lvﬁ }+f Zqi“Ha} = (g(r)). (32)
i=0 1=0 =0

Applying linearity of the Laplace transform to equation (32) gives

SO L)] + S Q)] + Y g ) = (g(r). (33)
=0 =0 =0
Using equation (33), we introduce a recursive relation as follows
E[L(uo)] = £(g(r)), (34)
which implies
SO L )] + 3 g Q)] + S g, = 0. (35)
i=0 i=0 i=0

From the recursive equation deduced from equation (35) we have zero order (¢°), first order (g'), second
order (g?), third order (¢*) up to k" order (¢*), as follows

ZERO ORDER
& {L(uo)} = £{g)}. (36)
FIRST ORDER
0 O{E(m)} + £{Qu0)} + £ {Ho} =0 (37)
SECOND ORDER
2 C{L()} + £{Q(u)} + £ {Hn} = 0. (3%)
THIRD ORDER
£ (L)} + £{Qua)} + £ {2} = 0. (39)
k' ORDER
" {L(w)} + £{Q(ur—1)} + L {H} 1} = 0, (40)
Taking ¢ as a small parameter we assume a power series solutions of (36-40) in the form
Ol r ) = S g (). (a1)
k=0

Taking the inverse Laplace of equation (41), we have
u(rtiq) =Y ¢ ur(r,), (42)
k=0

where u(r,t) are unknowns function of r,t. Now letting ¢ — 1, equation (42) yield the approximate
solution of u(r,t) in the following form

u(r,t) = i-tsk(-r, t),
k=0
= uglr,t) +ug(rt) +ua(r,t) +ug(rt)+..., (43)

higher order term of the series in (43), can be neglected because the magnitude decreases as the order
increases as reported in (Abdulhameed, Roslan & Bin Mohamad, (2014); Khan & Wu 2011). We shall
adopt the MHPM to solve the governing equation that will be developed to deseribed blood flow problem
through a porous artery.
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4 Implementation of Modified Homotopy Perturbation Method
to Solve the Model Governing Equation
To solve the formulated model governing equation for the velocity of blood in the previous section, we

apply the new algorithm formulated in section 3. By applying the Laplace transform with respect to
time (t) of equation (20) and (21) we get the following problem

_ 1o O%a o s 1 /oa\* _ [oa\’ 0%
F(s)+ {;g—kﬁ} = (P+M%u+a®su—A {; (J) +3 (J) 57
33 l@ + (:')\2_?]
1S\ For " o
1 (ou\*ou (ou\*? 8u du\ 9*udu
- s {; (5) ar T (5) oz +2 (5) @5} (44)
Subject to boundary condition as follows;
(r = 1), a=0,
o
(r = 0), = 0 (45)

where @(r, s) = f[;x’ u(r, t)e~*'dt is the Laplace transform of the function u(r, t) and F'(s) = f[;x' flt)ye==tdt
is the Laplace transform of the function f(t).

where f(t) = By (1 4 ecos2wt) + B; cos(2mwt + )

Substituting the recursive equation (32) into equation (44), leads to the following equation

> 1o, O*a > 1 {oa,\"° o, \ * 9%u
F L e nl = "1 (P 4 M%) e, — A |- [ 22 3(En) 2
(S)JrﬂZ:;q ['f‘ ar T 3':"2} ﬂg;q {( + M) +ast, {r‘ ( 87‘) + (c‘:?-r') a2
— 19z *a
o n+1 3| - T "
Zq Tas Ln ar Or2 }

n=>0

e 1 [ 9a,\* ou o, \* 9%n o, \ 92a, Ou
_ 41 - n n n ™ ™ n Ezl
ﬂz_;q s {r‘ ( ar ) ar + ( or ) ar2 +2( ar ) ar2 oy )
we have zero order, first order of the differential equation from equation 46) as follows

ZERO ORDER

0. ldﬁo 5)250 _ -
q"  F(s)+ [-r'iar' + 52 =0. (47)
1 Mg azﬁo
- = —F{(s). 48
L‘ ar ar? } (#) (48)
Subject to boundary conditions as follows:
(r = 1), iy =0,
: _ i _ )
(r = 0), B = 0. (49)
FIRST ORDER
1ou, &*u 1 [ dug\* o\ * 520
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Subject to boundary conditions as follows:

(r = 1), w =0,
(r = 0), %1:0. (51)
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The solutions of the recursive equations (48) and (50) is shown only for two terms that is, zero (ug) and
first (u1) order, subject to their boundary conditions which can be written as

@(r, s) = T + Ty. (52)
Using the MATHEMATICA Software, we solved (52) in the form
u(r,t) = ug + uy, (53)

by taking the inverse Laplace transform. The solutions for ug and u; are truncated after u; because the
higher order terms as smaller in line with the report in (Abdulhameed, Roslan & Bin Mohamad, 2014).

5 Graphical Results and Discussion

In this section, the unsteady pulsatile laminar flow of an incompressible fourth grade non-Newtonian
blood flow through a porous blood vessels or artery with the application of magnetic field to control
the movement of blood flow during surgery and imposed periodic body acceleration are discussed. To
identify the impact of different flow parameters on blood flow velocity, the approximate analytical re-
sult obtained for dimensionless velocity u(r,t) was simulated for different values of the model governing
equation parameters. These values are consistent with actual clinical scenarios and have been extracted
from a various studies available in literature. The results were portrayed graphically as can be seen on
figure 1 — 7. Fig 1 depict the effect of magnetic field on blood flow characteristic velocity (u) against
radial distance (r) for small value of time at (t = 0.3) respectively. Figure 2 also showecase the effect of
Womerseley parameter (a2) on blood flow velocity for small value of time (¢ = 0.2) respectively. Fig
3 exhibit the effect of pressure gradient (B;) on blood flow velocity against the radial distance. Fig 4
depict the effect of body acceleration on (Bs) on blood flow velocity against radius respectively. Fig 5
identify the impact of porous medium P on blood flow velocity versus radius for different values of P
at time (¢ = 0.2) respectively. Fig 6 depict the effect of fourth grade non-newtonian fluid parameter
(Ya) on blood flow specification, velocity (u) against radius (r) for small value of time i.e at (¢t = 0.2)
respectively. Fig 7 exhibit the effect of third grade non-Newtonian fluid parameter (A) on blood flow
velocity u(r,t) against the radial distance r for different values of A at time (¢ = 0.2) respectively.

1=
= Mo
= Wt
0.8 7V““"‘-=._‘_ \ B Woe 0.8
“‘-\\ \ M- 10
0.6 SR
B k‘i‘-‘:\
0.4 o
0.2
a
] a2 0.4 0.6
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Figure 1. Effect of the magnetic field M on blood flow specification velocity u against radius r for
different values of M at ¢ = 0.2
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=
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Figure 2: Effect of the Womerseley parameter o? on blood flow specification velocity u against radius r
for different values of a? at t = 0.2

Figure 1 was used to see the impact of magnetic field M2 on the flow characteristic velocity u against
the radial distance r for different values of magnetic field M? and fixing some other parameters with
o2 =1.37, By = 144, By = 141, A = 0.1, 7 = 0.3, e = 0.2, P = 0.1, x3 = 2.0, ¢ = 0.0, r = 0.1
w = 0.01 respectively. It ean be observe from figure 1 that the axial velocity of the blood is decreases
as the magnetic field parameter increases. This happened due to Lorentz force applied to the blood,
which lead to decelerate the flow or movement of blood in human arterial system. Therefore, injecting
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Figure 3: Effect of the pressure gradient parameter By on blood flow specification velocity w against
radius » for different values of By at t = 0.2
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Figure 4: Effect of the Body acceleration parameter By on blood flow specification velocity u against
radius r for different values of By at { = 0.2
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Figure 5: Effect of the Porous medium parameter P on blood How specification velocity u against radius
7 for different values of M at t =0.2
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Figure 6: Effect of the fourth grade non-Newtonian fluid parameter v, on blood flow specification velocity
u against radius r for different values of v, at £t = 0.2
an appropriate amount of magnetic field reduce the flow of blood and thereby it is useful in treatment
of certain cardiovascular diseases such as atherosclerosis or stenosis and also, its application is effective
during the human surgery.
Figure 2 was used to see the impact of variation of Womerseley parameter o on blood flow, by vary-
ing the Womerseley parameter a? and fixing some other parameters as follows M? = 0.1, v, = 2.0,
By=144 B =141, A=0.1,e=02, P=0.1, ¢ = 0.0, » = 0.1, v, = 0.3 respectively. The results
displayed in figure 2 shown that the axial velocity of blood decreases with an increase in the Womerseley
parameter.
Figure 3 depict the effect of pressure gradient B; on the flow velocity u against the radial distance r
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Figure T: Effect of the third grade non-Newtonian fluid parameter A on blood flow specification velocity
u against radius r for different values of A at t =10.2

by taking the different values of pressure gradient By as (1.0, 2.0, 3.0, 4.0) respectively, and fixing some
other parameters as constant. As indicated or shown on figure 3, an increase in the pressure gradient B,
will definitely causes an increase in the velocity profile.
Figure 4 portray the variation of body aceeleration on the flow specification u against the radial distance
r when the other governing parameters are held constant with By = 1.41, v, = 0.3, A = 0.1, a® = 1.005,
e=02 M2=01P=01w=02 vy, =20, ¢ = 00, r = 0.2 respectively. Here B, is chosen
as 0.5, 1.0, 1.5, 2.0 respectively. The results from figure 4 shows that by increasing the value of the
body acceleration parameter By on the blood flow, the axial velocity of the blood is increases which is
commensurate with the study of Akbarzadeh (2016).
Figure 5 exhibit the effect of porosity parameter or porous medium parameter P on the velocity profile
w against the radial distance » when the other governing parameters are held constant. Here the value
of P was varied as 0.2, 0.4, 0.6 and 0.8 respectively. The results presented in figure 5 depicted that by
increasing the values of porosity P, the veloeity profile of the fluid decreases. This result is based on
constant or specified pressure gradient, when the porosity increases, fluid ean easily moves through the
porous media and consequently the velocity profile of the fluid increases as reported exactly in the work
of Jamil, Roslan, abdulhameed & Hashim, (2018)
Figure 6 showcase the effect of fourth grade non-Newtonian fluid parameter =, on velocity profile u
against the radial distance » by taking the different values of fourth grade non-Newtonian parameter -,
as (1.0, 2.0, 3.0 and 4.0). Here, we fixed some other parameters to be By = 1.44, By = 1.44, o = 1.005,
Ya=03 A=01e=02 M?>=0.1,x, =0 P=0.1,w=2.0, ¢ = 0.0 and r = 0.2 respectively. It was
clearly observed from figure 6 that inereases the value of fourth grade non-Newtonian fluid parameter
would lead to an increase in the velocity of the blood. This study was correspond to the work of jamil
(2019).
Figure 7 portrayed the impact of variation of third grade non-Newtonian fluid parameter A on blood
How velocity u against the radial distance r, by varying a third grade non-Newtonian fluid parameter
A and fixing some other parameters as follows o? = 1.005, v, = 0.3, By = 1.44, y;, = 2.0, By = 1.41,
e=02 M?2=01,P=01,w=20, ¢ =0.0, r =0.2 respectively. It was explained clearly from figure
7 that when the non-Newtonian third grade fluid parameter A inereases, the velocity profile decreases
slightly. This flow behavior was also observed in the work of Akbarzadeh (2016).

6 Conclusion

In conelusion we find that;

(i) The velocity profile of the fluid is decreases as increases the magnetic field parameter. This hap-
pened due Lorenz force applied to the blood, which lead to decelerate the flow of blood in human
arterial system.

(ii) The velocity of the fluid decreases as the porosity parameter (I?) increases. This was happened
because of a constant pressure gradient, when porosity decreases, fluid can easily moves through
the porous media and consequently velocity profile increases.

(iii) The axial velocity of the blood increases by increasing the body acceleration parameter (Bz).
(iv) Increasing the pressure gradient (By) causes an increase in the velocity profile.

(v) The axial velocity of the blood decreases with increase in the Womersley parameter (a2).
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