
International Journal of Engineering Inventions

e-ISSN: 2278-7461, p-ISSN: 2319-6491

Volume 13, Issue 8 [August. 2024] PP: 49-61

www.ijeijournal.com Page | 49

Requirement-Driven Self-Adaptation: A Comprehensive

Overview

Hua Wang
School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou,

CHINA

Corresponding Author: Hua Wang

ABSTRACT: Self-adaptation in software systems is an increasingly vital capability as systems become more

complex and operate in dynamic environments. Requirement-driven self-adaptation (RDSA) is an approach that

focuses on ensuring that the self-adaptive behavior of a system is guided by its requirements, thereby

maintaining alignment with stakeholder goals even as the system changes. This paper provides a comprehensive

overview of RDSA, discussing its significance, the underlying principles, challenges, and existing methods. We

explore the role of requirements in driving self-adaptation, various strategies for implementing RDSA, and

future research directions that could enhance the effectiveness of this approach in real-world applications.

--- ---------

Date of Submission: 04-08-2024 Date of acceptance: 15-08-2024

--- ----------

I. INTRODUCTION

The increasing complexity of modern software systems has necessitated the development of systems

that can autonomously adapt to changes in their environment, user requirements, and operational contexts. This

has led to the emergence of self-adaptive systems, which can modify their behavior in response to internal and

external changes without the need for human intervention. Self-adaptive systems are especially valuable in

domains where operating conditions are unpredictable and dynamic, such as cyber-physical systems, the Internet

of Things (IoT), and pervasive computing environments.

Despite the advances in self-adaptive systems, a significant challenge remains: ensuring that the

system’s adaptations do not compromise its core objectives and requirements. Traditional approaches to self-

adaptation often focus on optimizing technical metrics such as performance, resource utilization, or fault

tolerance, potentially neglecting the broader system requirements that reflect the system’s intended functionality

and stakeholder needs[1][2]. This can lead to adaptations that, while technically sound, may not fully align with

the system's original goals.

To address this issue, the concept of requirement-driven self-adaptation (RDSA) has been proposed.

RDSA emphasizes the alignment of self-adaptive mechanisms with the system's requirements, ensuring that any

adaptation undertaken by the system continues to satisfy its original goals[3][4]. This approach is particularly

critical in complex and safety-critical systems, where deviations from the intended requirements could have

serious consequences. For instance, in autonomous vehicles, failure to adhere to safety requirements during

adaptation could lead to catastrophic outcomes[5].

Recent research has explored various methods for integrating requirements into the self-adaptation

process. One prominent approach involves using goal models that represent the system's objectives and guide

the adaptation process by evaluating how well different adaptations satisfy these goals[6][7]. Another approach

leverages feedback loops that continuously monitor the system's compliance with its requirements and trigger

adaptations when deviations are detected[8][9]. These feedback loops are often structured around the MAPE-K

(Monitor, Analyze, Plan, Execute, Knowledge) framework, which has been widely adopted in the design of self-

adaptive systems[10].

RDSA has also been extended to handle complex scenarios where requirements may themselves

change over time. This dynamic requirements management is crucial in environments such as IoT ecosystems,

where the system must not only adapt to changing conditions but also to evolving user needs and

expectations[11][12]. Researchers have proposed various techniques for managing dynamic requirements,

including the use of runtime models that can be updated as requirements evolve[13][14]. Additionally,

techniques such as Bayesian networks and machine learning have been employed to predict future requirement

changes and proactively adapt the system to meet them[15].

This paper provides a comprehensive review of the state-of-the-art in requirement-driven self-

adaptation. We begin by exploring the foundational principles of RDSA and the challenges involved in

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 50

integrating requirements into self-adaptive systems. We then discuss the various methods and frameworks that

have been developed to support RDSA, highlighting their strengths and limitations. Finally, we identify key

areas for future research that could further enhance the effectiveness and applicability of RDSA in real-world

scenarios.

By synthesizing existing research, this paper aims to advance our understanding of how to design self-

adaptive systems that are not only technically robust but also aligned with their intended purposes, ultimately

contributing to the development of more reliable, flexible, and intelligent software systems.

II. THE SIGNIFICANCE OF REQUIREMENT-DRIVEN SELF-ADAPTATION

2.1 Ensuring Goal Alignment

Ensuring that self-adaptive systems maintain alignment with their original goals is one of the most

critical challenges in the field of requirement-driven self-adaptation (RDSA). In the context of self-adaptive

systems, "goal alignment" refers to the continuous satisfaction of the system's specified requirements and

objectives, even as the system undergoes changes in response to varying environmental conditions or internal

states. Achieving this alignment is paramount, as any misalignment can lead to a system that fails to deliver its

intended functionality, potentially leading to system failures or suboptimal performance.

2.1.1 The Importance of Goal Alignment

Goal alignment in self-adaptive systems is essential for several reasons. First, it ensures that the

system's adaptations do not deviate from its core functionality and purpose, which is especially crucial in safety-

critical systems such as healthcare devices, autonomous vehicles, and aerospace systems. For example, in a

healthcare monitoring system, adaptations that affect how vital signs are monitored or reported could have life-

threatening consequences if they do not align with the original health monitoring goals.

Second, maintaining goal alignment helps in achieving long-term system robustness and reliability. By

ensuring that the system continues to meet its requirements, even as it adapts to new circumstances, goal

alignment supports the system's ability to function correctly over time without human intervention. This is

particularly important in environments where the cost of failure is high, such as in financial systems or critical

infrastructure.

2.1.2 Strategies for Ensuring Goal Alignment

To achieve and maintain goal alignment in self-adaptive systems, several strategies have been proposed

in the literature. These strategies focus on incorporating goal-oriented approaches, feedback loops, and formal

verification techniques to ensure that system adaptations are consistent with the specified goals.

(1) Goal-Oriented Requirements Engineering (GORE)

Goal-oriented requirements engineering (GORE) is a well-established approach that models the

system's goals explicitly and uses these models to guide the adaptation process. In GORE, goals are typically

decomposed into sub-goals and operationalized into specific tasks or actions that the system can perform. This

decomposition helps in identifying the various ways in which a system can achieve its high-level objectives.

During runtime, the system can evaluate different adaptation options by assessing how well they fulfill the

modeled goals.

GORE-based approaches often utilize goal models, such as the Goal-Oriented Requirements Language

(GRL) or the KAOS framework, which provide a formal representation of goals and their relationships. These

models can be integrated into the system's decision-making process, allowing the system to select adaptations

that best align with its goals. For example, in a smart building management system, GORE can be used to model

energy efficiency goals and ensure that any adaptations related to heating, ventilation, or lighting align with the

overall energy-saving objectives.

(2) Feedback Loops and the MAPE-K Framework

The MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) framework is another widely used

approach to ensure goal alignment in self-adaptive systems. This framework structures the self-adaptation

process into a loop that continuously monitors the system's state and environment, analyzes potential deviations

from goals, plans appropriate adaptations, and executes them. The knowledge component stores information

about the system's goals, constraints, and historical adaptations, providing a reference for decision-making.

In the context of ensuring goal alignment, the MAPE-K framework allows the system to dynamically

adjust its behavior in response to detected misalignments. For instance, if the monitoring phase detects that a

system is failing to meet its performance requirements due to increased load, the analysis phase can identify

potential solutions, such as scaling resources or optimizing certain operations, to realign with the performance

goals.

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 51

(3) Formal Verification and Runtime Verification

Formal verification techniques play a crucial role in ensuring that adaptations do not violate the

system's goals. These techniques involve mathematically proving that a system's behavior satisfies certain

properties or requirements, which can be particularly useful in critical systems where goal misalignment could

lead to severe consequences. Runtime verification, a subset of formal verification, involves monitoring and

checking the system's behavior during execution to ensure it remains consistent with its goals.

Runtime verification tools can be integrated into the self-adaptive system's feedback loop to provide

real-time assurances that adaptations are not leading to goal violations. For example, in an autonomous drone

system, runtime verification can be used to ensure that safety goals related to obstacle avoidance are

continuously met, even as the drone adapts its flight path in response to changing environmental conditions.

2.1.3 Challenges and Future Directions

Despite the progress in ensuring goal alignment in self-adaptive systems, several challenges remain.

One of the primary challenges is dealing with conflicting goals, where satisfying one goal may lead to the

violation of another. Balancing trade-offs between competing goals is a complex task that requires sophisticated

decision-making algorithms capable of evaluating the relative importance of each goal in the context of the

current situation.

Another challenge is managing dynamic and evolving goals, where the system's objectives change over

time due to shifts in user requirements or environmental conditions. Ensuring goal alignment in such scenarios

requires systems to be not only adaptive but also capable of reconfiguring their goal models and adapting their

behavior accordingly.

Future research in RDSA should focus on developing more robust methods for handling goal conflicts,

improving the scalability of goal-oriented approaches, and enhancing the system's ability to adapt to evolving

goals. Additionally, integrating machine learning techniques with traditional goal-oriented methods could

provide new opportunities for improving the decision-making process in self-adaptive systems, enabling them to

better predict and respond to changes in their operational environment.

In summary, ensuring goal alignment in self-adaptive systems is a critical aspect of RDSA that requires

a combination of goal-oriented modeling, feedback loops, formal verification, and runtime monitoring. By

employing these strategies, self-adaptive systems can be designed to maintain their alignment with original

requirements, leading to more reliable and effective adaptations.

2.2 Handling Uncertainty in Dynamic Environments

Uncertainty is an inherent characteristic of dynamic environments, posing significant challenges for

self-adaptive systems. These environments are often unpredictable and subject to change due to factors such as

fluctuating external conditions, incomplete information, and unforeseen events. In such contexts, self-adaptive

systems must be equipped with mechanisms to effectively handle uncertainty, ensuring that they can continue to

operate efficiently and meet their objectives even when the environment deviates from expected conditions.

2.2.1 Sources of Uncertainty

Uncertainty in dynamic environments can arise from multiple sources. One common source is the

variability of external conditions, such as changes in weather, network latency, or resource availability, which

can directly impact the system's performance. For example, a cloud-based application may experience variable

network conditions that affect data transmission speeds, leading to potential delays in service delivery.

Another source of uncertainty is incomplete or imprecise information. Self-adaptive systems often rely

on sensors, data feeds, or user inputs to monitor their environment and make decisions. However, these inputs

may be noisy, delayed, or partially missing, leading to an incomplete understanding of the current state of the

environment. This incomplete knowledge can hinder the system's ability to make informed decisions, requiring

it to operate under assumptions or estimates that may not fully capture the true state of the environment.

Finally, unforeseen events or anomalies can introduce significant uncertainty. These events may be rare

or exceptional, such as security breaches, hardware failures, or sudden spikes in demand. Because these events

are not part of the system's normal operational patterns, they are difficult to predict and may require the system

to adapt quickly to avoid failure or degradation in performance.

2.2.2 Strategies for Managing Uncertainty

To cope with uncertainty, self-adaptive systems employ a variety of strategies that enhance their

robustness and resilience. These strategies include adaptive decision-making, probabilistic reasoning, and

learning-based approaches.

(1) Adaptive Decision-Making

One of the most fundamental strategies for handling uncertainty is adaptive decision-making. Self-

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 52

adaptive systems must be capable of dynamically adjusting their behavior in response to changes in the

environment. This involves continuously monitoring the environment, assessing the impact of detected changes,

and selecting appropriate adaptations that align with the system's goals. The decision-making process must be

flexible enough to accommodate a wide range of possible scenarios, including those that were not anticipated

during the system's design.

Adaptive decision-making often involves trade-offs between different objectives, such as performance,

reliability, and resource efficiency. In uncertain environments, the system may need to prioritize certain

objectives over others, depending on the current conditions. For instance, during periods of high demand, a

cloud service might prioritize performance by scaling up resources, even if it means temporarily increasing

operational costs.

(2) Probabilistic Reasoning

Probabilistic reasoning is another key strategy for managing uncertainty. By incorporating probabilistic

models, self-adaptive systems can estimate the likelihood of various outcomes and make decisions based on

these probabilities. This approach allows the system to account for the inherent uncertainty in its environment

and make more informed decisions, even when precise information is unavailable.

Probabilistic reasoning can be applied to various aspects of the system, such as predicting future states

of the environment, assessing the risk of different adaptation strategies, and estimating the potential impact of

uncertainties on system performance. For example, in a predictive maintenance system, probabilistic models can

be used to estimate the likelihood of equipment failure based on historical data and sensor readings, allowing the

system to proactively schedule maintenance activities.

(3) Learning-Based Approaches

Machine learning and artificial intelligence techniques offer powerful tools for handling uncertainty in

dynamic environments. By leveraging data-driven models, self-adaptive systems can learn from past

experiences and improve their decision-making over time. These learning-based approaches enable the system

to better anticipate changes in the environment, adapt to new conditions, and optimize its behavior in the face of

uncertainty.

Reinforcement learning is a particularly relevant approach in this context, as it allows the system to

learn optimal adaptation strategies through trial and error. By receiving feedback on the success or failure of its

actions, the system can gradually refine its decision-making policies and improve its ability to handle

uncertainty. This approach is especially useful in environments where the system's operational conditions are

constantly evolving, such as in autonomous vehicles navigating through complex and dynamic traffic

conditions.

Another learning-based approach involves the use of ensemble methods, where multiple models or

adaptation strategies are combined to improve overall system performance. By leveraging the diversity of

different models, the system can reduce the impact of individual uncertainties and achieve more robust

adaptations. For example, an ensemble of predictive models might be used to forecast demand in a supply chain

management system, with the final adaptation decision being based on the aggregated predictions of all models.

2.2.3 Challenges and Considerations

While these strategies provide effective means of handling uncertainty, they also introduce new

challenges. For instance, adaptive decision-making requires the system to strike a balance between

responsiveness and stability, ensuring that frequent adaptations do not lead to oscillatory behavior or instability.

Similarly, probabilistic reasoning relies on accurate probability estimates, which may be difficult to obtain in

highly dynamic or poorly understood environments.

Learning-based approaches, while powerful, require careful design and tuning to avoid issues such as

overfitting, where the system becomes too specialized to specific conditions and fails to generalize to new

situations. Additionally, these approaches may involve significant computational overhead, which can be a

concern in resource-constrained environments.

Despite these challenges, effectively handling uncertainty in dynamic environments is crucial for the

success of self-adaptive systems. By employing adaptive decision-making, probabilistic reasoning, and learning-

based approaches, these systems can enhance their resilience and continue to meet their goals, even in the face

of unpredictable changes and incomplete information. As the complexity and dynamism of modern

environments continue to grow, these strategies will become increasingly important in ensuring the robustness

and reliability of self-adaptive systems.

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 53

III. CORE PRINCIPLES OF REQUIREMENT-DRIVEN SELF-ADAPTATION

3.1 Requirements as First-Class Citizens

In the context of self-adaptive systems, treating requirements as first-class citizens is a foundational

principle that ensures the system's adaptive behavior remains aligned with its intended goals and stakeholder

expectations. This approach elevates requirements from being static design-time artifacts to dynamic elements

that actively guide and influence the system's operation throughout its lifecycle.

3.1.1 The Role of Requirements in Self-Adaptive Systems

Requirements in traditional software systems are typically defined during the initial phases of

development and serve as a blueprint for the system's intended functionality and constraints. However, in self-

adaptive systems, this static view of requirements is insufficient. The system operates in environments that can

change unpredictably, and the system itself is expected to adapt in response to these changes. As such,

requirements in self-adaptive systems must be dynamic, evolving alongside the system to reflect changing

environmental conditions, user needs, and operational contexts.

In this framework, requirements are not merely constraints that the system must satisfy; they are active

drivers of the adaptation process. This means that self-adaptive systems continuously monitor their operational

environment and assess whether current requirements are being met. If a requirement is at risk of being violated

due to changing conditions, the system must trigger an adaptation to restore compliance. This real-time

monitoring and adaptation process ensures that the system's behavior remains aligned with its intended goals

even as it navigates through uncertain and dynamic environments.

3.1.2 Requirements Monitoring and Feedback Loops

A key aspect of treating requirements as first-class citizens is the implementation of robust monitoring

mechanisms that continuously assess the system's compliance with its requirements. These monitoring

mechanisms are typically integrated into feedback loops, which form the core of the system's adaptive

architecture.There are two primary types of feedback loops relevant to self-adaptive systems: the monitoring

loop and the adaptation loop.

(1) Monitoring Loop: The monitoring loop is responsible for tracking the system's performance and

operational context against defined requirements. This involves collecting data from various sensors, logs, and

external inputs, and analyzing this data to detect potential requirement violations. For example, in a cloud-based

application, the monitoring loop might track response times and resource utilization to ensure they remain

within acceptable thresholds defined by performance requirements.

(2) Adaptation Loop: When a deviation from the requirements is detected, the adaptation loop is

activated. This loop determines the appropriate adaptive actions to take in order to restore compliance with the

requirements. The adaptation loop may involve selecting alternative strategies, reallocating resources, adjusting

system parameters, or reconfiguring components to address the detected issue. The key challenge here is to

ensure that the chosen adaptation not only resolves the immediate issue but also maintains the overall alignment

with all system requirements.

By embedding requirements into these feedback loops, self-adaptive systems are able to maintain a

continuous and dynamic alignment with their goals, even in the face of environmental changes and internal

variability. This approach contrasts sharply with traditional systems, where requirement validation typically

occurs only at specific points in the development cycle, often leading to delayed detection of requirement

violations.

3.1.3 Managing Conflicting Requirements

In complex systems, it is common to encounter conflicting requirements, where satisfying one

requirement may lead to the violation of another. For instance, a self-adaptive system might have requirements

for both high performance and low energy consumption, which can conflict under certain conditions. Managing

these conflicts is a critical aspect of treating requirements as first-class citizens.

To address conflicting requirements, self-adaptive systems must prioritize and make trade-offs between

competing objectives. This involves defining a hierarchy or preference model that guides the system in

resolving conflicts. For example, in a scenario where performance and energy efficiency requirements conflict,

the system might prioritize performance during peak usage times while optimizing for energy efficiency during

periods of low demand.

Another approach to managing conflicting requirements is to introduce flexibility into the requirements

themselves. This can be achieved by specifying requirements in a goal-oriented manner, where the system aims

to achieve a set of goals rather than strictly adhering to rigid constraints. Goal-oriented requirements allow for a

range of acceptable behaviors, giving the system the flexibility to adapt in ways that balance competing

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 54

objectives. For example, instead of requiring a fixed response time, a goal-oriented requirement might specify a

response time target with acceptable deviations under certain conditions.

3.1.4 Evolution of Requirements Over Time

The dynamic nature of self-adaptive systems necessitates that requirements evolve over time. This

evolution can be driven by several factors, including changes in the operational environment, shifts in user

needs, or the emergence of new regulatory standards. Treating requirements as first-class citizens means that the

system must be capable of not only adapting to current requirements but also updating and refining its

requirements as it learns and grows.

The evolution of requirements in self-adaptive systems is often facilitated by machine learning and

data-driven approaches. For instance, by analyzing historical data and user feedback, the system can identify

trends and patterns that suggest the need for new requirements or modifications to existing ones. This

continuous learning process enables the system to stay relevant and effective in dynamic environments.

Moreover, requirement evolution must be managed carefully to avoid introducing inconsistencies or

conflicts. Versioning and traceability mechanisms can help ensure that changes to requirements are well-

documented and that the system’s adaptive strategies are updated accordingly.

3.1.5 Challenges and Future Directions

While treating requirements as first-class citizens offers significant benefits for the development and

operation of self-adaptive systems, it also introduces several challenges. One of the primary challenges is the

increased complexity of managing dynamic requirements. The system must be capable of handling not only the

variability of its environment but also the potential evolution and conflicts of its requirements.

Another challenge is ensuring that the system’s adaptations are timely and effective, especially in

highly dynamic environments where delays in adaptation could lead to requirement violations. This requires

sophisticated monitoring and decision-making mechanisms that can operate efficiently in real-time.

Looking forward, research in this area is likely to focus on improving the automation and intelligence

of requirement management processes. Advances in artificial intelligence and machine learning could enable

self-adaptive systems to better predict and anticipate changes in their environments and requirements, leading to

more proactive and robust adaptations.

Overall, by treating requirements as first-class citizens, self-adaptive systems can achieve greater

resilience, flexibility, and alignment with their intended goals, ensuring that they remain effective and reliable in

the face of an ever-changing world.

3.2 Continuous Monitoring and Feedback

In self-adaptive systems, continuous monitoring and feedback mechanisms are essential for

maintaining alignment with system requirements and ensuring that adaptive behaviors are appropriately

triggered and executed. These mechanisms provide the necessary data and insights to make informed decisions

about when and how the system should adapt in response to changes in its environment or internal state.

3.2.1 The Importance of Continuous Monitoring

Continuous monitoring serves as the foundation for any self-adaptive system by providing real-time

data on the system's operational context, performance, and compliance with requirements. Without effective

monitoring, the system would lack the visibility needed to detect deviations from desired behavior or emerging

threats that could compromise its functionality.

Monitoring involves tracking a variety of metrics and indicators, such as resource utilization, response

times, error rates, environmental conditions, and user interactions. These metrics are often gathered through a

combination of sensors, logs, and external data sources, which are then processed and analyzed to assess the

system's current state.

For instance, in a cloud-based application, continuous monitoring might involve tracking CPU and

memory usage, network latency, and the rate of incoming requests. This data allows the system to detect

potential performance bottlenecks or spikes in demand, which could necessitate scaling up resources or

adjusting service parameters.

3.2.2 Feedback Loops: The Backbone of Self-Adaptation

Feedback loops are integral to self-adaptive systems, providing a structured process for using the data

gathered through continuous monitoring to inform and drive adaptations. A typical self-adaptive system

employs multiple feedback loops at different levels of granularity, each addressing specific aspects of the

system's behavior and performance.

(1) Proactive Feedback Loops: These loops are designed to anticipate potential issues before they

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 55

become critical. By analyzing trends and patterns in the monitored data, proactive feedback loops can predict

future states of the system or environment and initiate preemptive adaptations. For example, if the system

detects a gradual increase in network latency, it might proactively adjust its data transmission strategies to

maintain performance levels.

(2) Reactive Feedback Loops: Reactive loops respond to immediate changes or anomalies that have

already occurred. When the monitoring system detects a deviation from the expected behavior or a requirement

violation, the reactive feedback loop is triggered to implement corrective actions. For instance, if the system

experiences a sudden drop in available memory, the reactive loop might trigger a memory cleanup process or

reduce the workload to prevent a crash.

(3) Learning Feedback Loops: These loops incorporate learning mechanisms to continuously improve

the system's adaptation strategies over time. By analyzing the outcomes of previous adaptations, learning

feedback loops can refine decision-making processes and enhance the system's ability to handle similar

situations in the future. This approach is particularly useful in dynamic environments where the system must

adapt to new and evolving challenges.

The integration of multiple feedback loops ensures that the system can address both immediate and

long-term adaptation needs, balancing between reactive measures and proactive planning. Moreover, learning

loops help the system evolve and optimize its performance, making it more resilient to uncertainty and change.

3.2.3 Challenges in Continuous Monitoring and Feedback

While continuous monitoring and feedback loops are crucial for self-adaptive systems, they also

present several challenges as follows.

(1) Scalability: Monitoring large-scale systems, especially those distributed across multiple locations or

operating in diverse environments, can generate vast amounts of data. Processing this data in real-time to

provide timely feedback requires efficient data management and analysis techniques.

(2) Latency: The effectiveness of feedback loops depends on the timeliness of the data they receive.

High latency in data collection or processing can delay the system's response to emerging issues, potentially

leading to performance degradation or requirement violations.

(3) Overhead: Continuous monitoring and the execution of feedback loops introduce additional

computational overhead. Balancing the need for detailed monitoring with the system's overall performance is

critical to ensure that the monitoring process itself does not become a bottleneck.

(4) Data Quality: The accuracy and reliability of the monitored data are paramount. Inaccurate or noisy

data can lead to incorrect decisions and inappropriate adaptations, compromising the system's effectiveness.

Addressing these challenges requires careful design of the monitoring architecture, efficient data

processing algorithms, and robust mechanisms for managing the trade-offs between monitoring fidelity and

system performance. Despite these challenges, continuous monitoring and feedback are indispensable for

ensuring that self-adaptive systems remain responsive, reliable, and aligned with their intended goals.

3.3 Decision-Making Under Uncertainty

Decision-making under uncertainty is one of the most complex aspects of self-adaptive systems. In

dynamic and unpredictable environments, self-adaptive systems must make decisions without having complete

information about the current or future state of the environment. This uncertainty can stem from a variety of

factors, including incomplete data, noisy inputs, changing conditions, and unforeseen events. Uncertainty in

self-adaptive systems can manifest in different ways.

(1) Environmental Uncertainty: The external environment in which the system operates may change in

unpredictable ways, such as sudden shifts in user demand, network conditions, or available resources. For

instance, a mobile application may experience fluctuating network connectivity, affecting its ability to

communicate with cloud services.

(2) Model Uncertainty: The models used by the system to represent its environment, predict future

states, or evaluate the outcomes of potential adaptations may be incomplete or inaccurate. This can lead to

suboptimal decisions if the model's assumptions do not hold true in the actual operating conditions.

(3) Decision Uncertainty: When multiple adaptation strategies are available, the system must choose

the most appropriate one without certainty about its success. The decision-making process involves evaluating

the potential risks and benefits of each option, often in the absence of clear or complete information.

To effectively make decisions under uncertainty, self-adaptive systems employ various strategies that

help mitigate the risks and maximize the chances of achieving desired outcomes. Probabilistic decision-making

involves incorporating uncertainty into the decision-making process by assigning probabilities to different

outcomes. This approach allows the system to evaluate the likelihood of success for various adaptation

strategies and choose the one with the highest expected utility. For example, a cloud service might use

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 56

probabilistic models to estimate the likelihood of a server overload and decide whether to provision additional

resources preemptively.

Utility-based optimization is a decision-making strategy where the system evaluates each potential

adaptation based on a utility function that quantifies the expected benefits and costs. The utility function takes

into account various factors such as performance, reliability, energy consumption, and user satisfaction. The

system then selects the adaptation that maximizes the overall utility, even if it involves trade-offs between

conflicting objectives.

For example, a self-adaptive system managing an autonomous vehicle might use a utility function to

balance safety, fuel efficiency, and travel time. In scenarios with uncertain traffic conditions, the system would

choose a route that optimizes these factors based on the current information and the predicted likelihood of

different outcomes.

Looking ahead, research in decision-making under uncertainty is likely to focus on improving the

scalability, robustness, and transparency of existing strategies. Advances in machine learning, particularly in

areas such as explainable AI and deep reinforcement learning, hold promise for enhancing the decision-making

capabilities of self-adaptive systems, enabling them to operate more effectively in complex, uncertain

environments.

IV. CHALLENGES IN IMPLEMENTING REQUIREMENT-DRIVEN SELF-ADAPTATION

4.1 Complexity in Requirements Specification

The specification of requirements in self-adaptive systems is inherently complex, driven by the

dynamic nature of the environments in which these systems operate and the need for flexibility in their

behavior. Unlike traditional systems, where requirements are relatively static and well-defined, self-adaptive

systems must accommodate evolving needs and conditions. This introduces a significant challenge in

accurately capturing and formalizing the requirements that will guide the system's adaptations.

In self-adaptive systems, requirements often encompass a wide range of factors, including functional

needs, quality attributes, environmental constraints, and user preferences. These requirements are not only

diverse but may also conflict with one another. For instance, a self-adaptive system designed for energy

efficiency might need to balance the trade-off between performance and power consumption, where

improving one could negatively impact the other. This interdependency adds another layer of complexity to

the specification process.

Moreover, the need for self-adaptive systems to operate autonomously implies that requirements

must be expressed in a way that the system can interpret and act upon without human intervention. This

necessitates the use of formal models and languages that can accurately capture the nuances of these

requirements while being computationally manageable. However, creating such formalizations is challenging,

as it requires a deep understanding of both the domain and the potential adaptations that the system might

undertake.

Another complicating factor is the uncertainty inherent in the environments where self-adaptive

systems are deployed. Requirements must be specified to account for this uncertainty, which can manifest as

incomplete information, unpredictable environmental changes, or unforeseen user behaviors. This demands

that the requirements not only define desired outcomes but also include contingencies for handling various

forms of uncertainty.

Furthermore, the complexity in specifying requirements is compounded by the need for ongoing

evolution. As the system and its environment evolve, the requirements themselves may need to be updated or

refined. This dynamic aspect requires a continuous interplay between requirement specification, system

monitoring, and adaptation, making the process of maintaining accurate and relevant requirements an ongoing

challenge.

In summary, the complexity in requirements specification for self-adaptive systems stems from the

need to balance diverse, often conflicting requirements; the necessity for formal, machine-interpretable

specifications; the uncertainty in dynamic environments; and the requirement for ongoing evolution and

refinement of the requirements themselves.

4.2 Scalability of Adaptation Mechanisms

Scalability is a critical concern for self-adaptive systems, particularly as they are increasingly

deployed in large-scale, distributed environments such as cloud computing, the Internet of Things (IoT), and

smart cities. The ability of adaptation mechanisms to scale effectively determines the system’s capacity to

handle growing demands, diverse workloads, and complex operational environments.

Scalability in this context refers to the system's ability to maintain performance, reliability, and

responsiveness as the size and complexity of the environment increase. For instance, in a cloud-based self-

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 57

adaptive system, scalability might involve managing thousands of virtual machines, each with its own set of

requirements and potential adaptations, without a significant degradation in performance.

One of the primary challenges in achieving scalability lies in the coordination of adaptations across

multiple components or subsystems. In a large-scale system, adaptations may need to be synchronized across

distributed nodes to ensure consistency and avoid conflicts. This requires efficient communication and

coordination mechanisms that can operate under the constraints of network latency, bandwidth limitations,

and varying computational resources.

Another challenge is the computational overhead associated with monitoring, decision-making, and

executing adaptations. As the system scales, the volume of data that needs to be monitored and analyzed

increases, as does the complexity of the decision-making process. Ensuring that the system can process this

information in a timely manner, without introducing significant delays or bottlenecks, is crucial for

maintaining scalability.

Moreover, the adaptation mechanisms themselves must be designed to scale. This means that the

algorithms and models used for adaptation must be capable of handling increased complexity without

becoming prohibitively expensive in terms of computational resources. Techniques such as hierarchical

management, where local adaptations are handled independently while global consistency is maintained, can

help address these scalability challenges.

The scalability of adaptation mechanisms also involves the ability to dynamically allocate resources

based on current needs. For example, in a cloud environment, the system may need to scale up resources to

handle a surge in demand or scale them down during periods of low activity to conserve energy. The ability to

efficiently manage these resources, while ensuring that the system continues to meet its requirements, is a key

aspect of scalability.

In conclusion, ensuring the scalability of adaptation mechanisms in self-adaptive systems involves

overcoming challenges related to coordination, computational overhead, algorithmic complexity, and dynamic

resource management. Addressing these challenges is essential for enabling self-adaptive systems to operate

effectively in large-scale, distributed environments.

4.3 Ensuring Requirement Consistency Over Time

Ensuring consistency of requirements over time is a crucial aspect of managing self-adaptive

systems. As these systems operate in dynamic environments, the conditions and constraints under which they

function may change, leading to potential conflicts or misalignments between the system’s behavior and its

specified requirements. Maintaining consistency in such scenarios is a complex task that requires continuous

monitoring, evaluation, and possibly, evolution of the requirements themselves.

Requirement consistency refers to the alignment between the system's ongoing behavior and the

goals or conditions outlined in its requirements. In a self-adaptive system, this alignment must be preserved

not just at the initial deployment but throughout the system's lifecycle, even as the system adapts to new

situations or evolving contexts.

One challenge in maintaining requirement consistency is the potential for requirement drift. This

occurs when the operational environment or the system's internal state changes in ways that were not

anticipated during the initial requirement specification. As a result, the original requirements may no longer

accurately reflect the desired outcomes or constraints, leading to inconsistencies. For example, a self-adaptive

traffic management system might encounter new traffic patterns due to urban development, which could

render its original optimization strategies suboptimal or even counterproductive.

To address this challenge, self-adaptive systems often employ techniques such as continuous

validation and verification of requirements. These processes involve regularly checking whether the system's

current behavior and adaptations still satisfy the requirements. If inconsistencies are detected, the system may

need to re-evaluate its requirements, adjust its adaptation strategies, or even update the requirements to better

align with the new context.

Another aspect of ensuring requirement consistency is handling conflicts between requirements. In

complex systems, different requirements may occasionally conflict, especially when the system is subjected to

varying or unforeseen operational conditions. For instance, a self-adaptive energy management system might

have to balance the conflicting requirements of maintaining power supply stability and minimizing energy

costs. Ensuring consistency in such cases requires sophisticated decision-making processes that can prioritize

and reconcile conflicting requirements.

Moreover, the system’s ability to evolve its requirements over time is essential for maintaining long-

term consistency. As the system encounters new scenarios, it may need to adapt not only its behavior but also

its goals. This evolutionary approach to requirements management involves continuous learning and

adaptation, where the system refines its understanding of the environment and updates its requirements

accordingly. This process helps to ensure that the system remains effective and aligned with its objectives,

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 58

even as external conditions change.

Finally, ensuring requirement consistency also involves maintaining traceability between

requirements and system adaptations. This traceability allows for a clear understanding of how each

requirement is being met by the system's adaptations and provides a basis for evaluating the effectiveness of

the adaptation strategies. It also aids in diagnosing issues when inconsistencies arise, enabling more targeted

and effective interventions.

In summary, ensuring requirement consistency over time in self-adaptive systems involves

addressing challenges such as requirement drift, conflict resolution, evolutionary requirements management,

and maintaining traceability. These efforts are critical for ensuring that the system continues to meet its goals

and operate effectively in dynamic and changing environments.

V. FUTURE RESEARCH DIRECTIONS

5.1 Autonomous Requirements Evolution

As self-adaptive systems become increasingly complex and autonomous, the concept of autonomous

requirements evolution emerges as a critical area of research and development. Autonomous requirements

evolution refers to the system’s ability to independently modify, update, and refine its requirements in

response to changes in its operational environment, internal state, or user goals. This capability is essential for

systems that operate in highly dynamic environments, where static requirements are insufficient to capture the

full scope of potential adaptations needed for long-term success.

Autonomous requirements evolution involves several key components. First, the system must have

the capability to detect and assess changes in its environment or within its own performance. This requires

advanced monitoring and analysis mechanisms that can identify deviations from expected behavior or

emerging patterns that suggest a shift in the operational context. Once a change is detected, the system needs

to evaluate its current requirements to determine if they are still valid or if they need to be revised.

The next step in autonomous requirements evolution is the formulation of new or updated

requirements. This process may involve reasoning about the goals and constraints that should guide the

system's behavior in light of the detected changes. For instance, if a self-adaptive energy management system

detects a new energy consumption pattern due to seasonal changes, it might autonomously adjust its

requirements to prioritize energy savings during peak hours.

Moreover, the system must ensure that any evolved requirements are consistent with existing ones

and do not introduce conflicts or redundancies. This involves automated reasoning and decision-making

capabilities that can prioritize and reconcile competing requirements. Additionally, the system may need to

simulate or predict the outcomes of applying the new requirements to ensure that they will lead to desirable

behavior before actually implementing them.

Finally, autonomous requirements evolution requires mechanisms for implementing and enforcing

the new requirements within the system's adaptation processes. This includes updating the system’s

adaptation strategies, modifying control algorithms, and possibly even altering the system’s architecture to

accommodate the evolved requirements. Throughout this process, the system must maintain a continuous

feedback loop, monitoring the effectiveness of the new requirements and further evolving them as necessary.

In summary, autonomous requirements evolution represents a significant advancement in the field of

self-adaptive systems, enabling them to remain effective and aligned with their goals even in the face of

ongoing environmental changes and uncertainties. This capability is crucial for the development of truly

autonomous systems that can operate over long periods without human intervention, continually adapting to

meet new challenges and opportunities.

5.2 Enhanced Scalability Through Distributed Adaptation

Scalability remains a critical challenge for self-adaptive systems, particularly as they are increasingly

deployed in large-scale, distributed environments. Enhanced scalability through distributed adaptation

addresses this challenge by decentralizing the adaptation processes, allowing individual components or

subsystems to adapt independently while maintaining overall system coherence and effectiveness.

Distributed adaptation leverages the principles of distributed computing to manage complexity and

scale in self-adaptive systems. Instead of relying on a central controller to manage all adaptations, the system

distributes the adaptation tasks across multiple nodes or agents. Each of these nodes operates autonomously,

monitoring its local environment, making decisions, and implementing adaptations that are best suited to its

specific context. This approach significantly reduces the computational overhead and communication

bottlenecks associated with centralized adaptation mechanisms.

One of the primary benefits of distributed adaptation is its ability to handle large-scale systems more

effectively. For example, in a large-scale IoT network, each sensor or device could independently adjust its

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 59

behavior based on local conditions, such as changes in temperature, humidity, or network traffic. By

distributing these adaptation decisions, the system as a whole can scale to manage thousands or even millions

of devices without a corresponding increase in complexity or resource consumption.

However, distributed adaptation also introduces new challenges, particularly in ensuring that local

adaptations do not lead to global inconsistencies or conflicts. To address this, distributed adaptation

mechanisms often include coordination protocols that allow individual nodes to communicate and

synchronize their adaptations when necessary. These protocols ensure that while nodes operate independently,

they still align with the system’s overall goals and constraints.

Another key aspect of enhanced scalability through distributed adaptation is fault tolerance. In large-

scale systems, failures are inevitable, whether due to hardware malfunctions, network issues, or unexpected

environmental conditions. Distributed adaptation enhances the system’s resilience by allowing unaffected

nodes to continue operating and adapting independently, while mechanisms are in place to detect and recover

from local failures.

Furthermore, distributed adaptation supports the dynamic allocation of resources, which is critical

for managing scalability in environments with fluctuating demands. For instance, in cloud computing,

distributed adaptation can enable the system to allocate computing resources dynamically, scaling up or down

based on current workloads and performance requirements.

In conclusion, enhanced scalability through distributed adaptation offers a powerful approach to

managing the complexity and scale of self-adaptive systems. By decentralizing the adaptation processes and

empowering individual components to adapt autonomously, this approach not only improves scalability but

also enhances the system's resilience, flexibility, and overall effectiveness in dynamic and large-scale

environments.

5.3 Formal Verification of Adaptation Processes

Formal verification of adaptation processes is a crucial aspect of ensuring the reliability and

correctness of self-adaptive systems. As these systems become more complex and operate in critical domains,

the need to rigorously verify that their adaptation mechanisms behave as intended under all possible

conditions becomes increasingly important.

Formal verification involves the use of mathematical models and techniques to prove that a system’s

behavior adheres to its specified requirements. In the context of self-adaptive systems, this means verifying

that the adaptation processes consistently lead to outcomes that satisfy the system’s goals, even in the

presence of environmental changes, uncertainties, and potential faults.

One of the primary challenges in formal verification of adaptation processes is the complexity of the

system’s behavior. Self-adaptive systems often operate in dynamic environments with a vast number of

possible states and transitions, making it difficult to exhaustively verify all potential scenarios using

traditional testing methods. Formal methods, such as model checking and theorem proving, address this

challenge by allowing for the systematic exploration of all possible states and behaviors, providing guarantees

about the system’s correctness.

Model checking, for instance, involves creating a formal model of the system’s adaptation processes

and then exhaustively exploring all possible states to check for violations of specified properties. This

technique is particularly useful for verifying temporal properties, such as ensuring that a particular adaptation

eventually leads to a desired outcome or that certain undesirable states are never reached.

Theorem proving, on the other hand, involves deriving formal proofs that certain properties hold for

all possible executions of the adaptation processes. This approach can handle more complex properties and

systems with infinite or highly complex state spaces, though it typically requires more manual effort and

expertise.

Another key aspect of formal verification in self-adaptive systems is the need to account for

uncertainty and non-determinism. Unlike traditional systems, where the environment is often assumed to be

static or predictable, self-adaptive systems must operate under varying and often unpredictable conditions.

This requires the verification process to consider not just a single model of the environment but a range of

possible scenarios, including worst-case conditions and rare events.

Moreover, formal verification of adaptation processes must also ensure that the system’s behavior

remains robust in the presence of faults or unexpected changes. This involves verifying that the system can

detect and recover from errors, maintain its goals even when some components fail, and continue operating

safely and effectively under degraded conditions.

In conclusion, formal verification of adaptation processes is essential for ensuring the correctness

and reliability of self-adaptive systems, particularly as they are deployed in increasingly complex and critical

domains. By rigorously proving that the system’s adaptations will always satisfy its requirements, formal

verification provides a foundation for trust in the system’s ability to operate autonomously and effectively in

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 60

dynamic and uncertain environments.

VI. CONCLUSION

The evolution of self-adaptive systems has reached a pivotal point where the integration of

requirement-driven self-adaptation (RDSA) is not only beneficial but necessary for developing robust,

flexible, and scalable systems capable of thriving in dynamic and uncertain environments. This paper has

explored the essential components of RDSA, highlighting its focus on ensuring that the adaptation processes

remain aligned with the system's original goals, even as these goals evolve autonomously over time.

In the current landscape of self-adaptive systems, where operational contexts can change

unpredictably and user requirements continuously evolve, the traditional approaches to system design and

adaptation are no longer sufficient. The RDSA paradigm addresses these challenges by emphasizing

continuous monitoring, feedback loops, and autonomous decision-making under uncertainty. This approach

ensures that self-adaptive systems can not only respond to immediate changes in their environment but also

anticipate future requirements and adjust their behavior proactively.

One of the key insights discussed is the importance of treating requirements as first-class citizens

throughout the system’s lifecycle. By embedding requirements into the very fabric of the adaptation

processes, systems are better equipped to manage complexity and uncertainty. This enables them to make

informed decisions that balance the trade-offs between competing objectives, such as performance, reliability,

and resource efficiency.

Despite the significant advancements in RDSA, several challenges remain, particularly concerning

the complexity of requirements specification, scalability of adaptation mechanisms, and ensuring consistency

over time. Addressing these challenges will require continued research into more sophisticated modeling

techniques, scalable adaptation frameworks, and robust verification methods that can handle the intricacies of

modern self-adaptive systems.

Looking ahead, the future of RDSA is promising, with potential advancements in autonomous

requirements evolution, distributed adaptation, and formal verification. These developments will further

enhance the ability of self-adaptive systems to operate autonomously, making them more resilient to

environmental changes and better suited for deployment in critical, large-scale, and distributed applications.

Autonomous requirements evolution, in particular, represents a significant frontier, where systems

can independently update and refine their requirements in response to both internal and external stimuli. This

capability will be crucial for long-term operation in environments where human intervention is limited or

infeasible. Similarly, distributed adaptation will be key to managing the complexity of large-scale systems,

allowing individual components to adapt independently while maintaining global coherence.

The need for formal verification in adaptation processes cannot be overstated. As these systems

become more autonomous, the assurance provided by formal methods will be indispensable in ensuring that

the system’s behavior remains aligned with its intended goals, even in the face of uncertainty and change.

In conclusion, requirement-driven self-adaptation represents a transformative approach to designing

and managing self-adaptive systems. By aligning adaptation mechanisms with evolving requirements, RDSA

provides a robust framework for developing systems that are not only reactive to immediate changes but also

proactive in anticipating future challenges. As research and development in this field continue to advance, the

principles and techniques of RDSA will play an increasingly critical role in the creation of autonomous

systems capable of operating effectively in complex, dynamic, and uncertain environments.

REFRENCES
[1]. R. De Lemos, H. Giese, H. Muccini, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, and J.

Weyns, "Software Engineering for Self-Adaptive Systems: A Second Research Roadmap," in Software Engineering for Self-

Adaptive Systems II: International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010. Revised Selected and Invited Papers,

R. De Lemos, H. Giese, H. Muccini, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, and J.
Weyns, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–32. doi: 10.1007/978-3-642-35813-5_1.

[2]. J. Cámara, D. Garlan, B. Schmerl, and A. Pandey, "Optimal Tradeoffs between Multiple Dimensions of Adaptation in Cyber-

Physical Systems," in 2021 IEEE/ACM 16th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2021, pp. 1–12. doi: 10.1109/SEAMS51251.2021.00010.

[3]. A. M. Fernandes, R. J. Machado, J. P. Teixeira, and L. Gomes, "A Model-Driven Approach for Self-Adaptive Software

Systems," Journal of Systems and Software, vol. 172, pp. 110889, Dec. 2021. doi: 10.1016/j.jss.2020.110889.
[4]. S. H. Omidiora and H. Yahaya, "Dynamic Requirement Engineering for Self-Adaptive Systems," in 2021 IEEE International

Conference on Robotics, Automation and Artificial Intelligence (RAAI), 2021, pp. 1–6. doi: 10.1109/RAAI53999.2021.9612489.

[5]. P. Maes, T. Vogel, J. Weyns, and T. Bureš, "Proactive and Reactive Adaptation in Self-Adaptive Systems: A Comparative
Study," ACM Transactions on Autonomous and Adaptive Systems, vol. 15, no. 3, pp. 1-32, Sep. 2021. doi: 10.1145/3452896.

[6]. M. Morandini, L. Penserini, and A. Perini, "Towards Goal-Oriented Development of Self-Adaptive Systems," in Proceedings of the

2015 IEEE 10th International Conference on Software Engineering and Formal Methods (SEFM), 2015, pp. 171–180. doi:
10.1109/SEFM.2015.29.

[7]. S. S. Bauer, R. Hähnle, and S. Jacobs, "Formal Verification of Self-Adaptive Systems," Journal of Automated Reasoning, vol. 60,

no. 1, pp. 3–23, Jan. 2018. doi: 10.1007/s10817-017-9408-9.

http://www.ijeijournal.com/

Requirement-Driven Self-Adaptation: A Comprehensive Overview

www.ijeijournal.com Page | 61

[8]. J. Andersson, R. de Lemos, S. Malek, and D. Weyns, "Modeling Dimensions of Self-Adaptive Software Systems," in Software

Engineering for Self-Adaptive Systems, 2017, pp. 27–47. doi: 10.1007/978-3-540-89749-6_2.

[9]. P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein, "Requirements-Aware Systems: A Research Agenda for RE for
Self-Adaptive Systems," in 2010 18th IEEE International Requirements Engineering Conference, 2010, pp. 95–103. doi:

10.1109/RE.2010.23.

[10]. N. Esfahani, A. K. Georgantas, and V. Issarny, "A Goal-Oriented Approach for Self-Adaptive Systems," Proceedings of the 9th
ACM SIGSOFT International Conference on Quality of Software Architectures (QoSA), vol. 792, 2015, pp. 149–158. doi:

10.1145/2465478.2465483.

[11]. Y. Brun, G. D. C. Aceituno, R. De Lemos, D. Garlan, H. Giese, H. Muccini, M. Shaw, R. Taylor, and J. Tichy, "A Requirements-
Driven Framework for Self-Adaptive Systems," IEEE Transactions on Software Engineering, vol. 39, no. 3, pp. 423–441, Mar.

2013. doi: 10.1109/TSE.2012.64.

[12]. H. Song, M. Lynch, and C. Thorpe, "A Dynamic Framework for Runtime Adaptation of Self-Adaptive Systems," Future Generation
Computer Systems, vol. 95, pp. 133-147, Jun. 2019. doi: 10.1016/j.future.2019.01.040.

[13]. D. Garlan, B. Schmerl, and P. Steenkiste, "The Role of Architecture in Self-Adaptive Systems," in Proceedings of the 2021

IEEE/ACM International Conference on Software Architecture (ICSA), 2021, pp. 1-12. doi: 10.1109/ICSA51549.2021.00008.
[14]. S. Sharifloo, A. Zisman, and G. Spanoudakis, "Adaptive Monitoring in Self-Adaptive Systems," Information and Software

Technology, vol. 101, pp. 1-18, Jun. 2018. doi: 10.1016/j.infsof.2018.04.001.

[15]. J. Malakuti and S. Shevtsov, "Adaptive Requirements Engineering: Dealing with Uncertainty in Self-Adaptive Systems," in 2019
IEEE 27th International Requirements Engineering Conference (RE), 2019, pp. 163-172. doi: 10.1109/RE.2019.00023.

http://www.ijeijournal.com/

