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ABSTRACT:  In response to the issues such as missed detections, false alarms, and difficulties in feature 

recognition for small - sized target defects in existing steel surface defect detection methods, this paper presents 

a steel defect detection algorithm grounded in the ECBW - YOLO model.Based on the YOLOv11s model, the 

Efficient Channel Attention (ECA) mechanism is incorporated into the C3K2 module, giving rise to a novel 

C3K2ECA module. This module can effectively capture the feature information of small - sized targets, thereby 

enhancing the feature extraction capabilities.Within the Neck network, the weighted Bidirectional Feature 

Pyramid Network (BIFPN) structure is introduced. This enables the model to detect targets across different 

scales and strengthens its detection performance for targets of varying sizes.Moreover, the Convolutional Block 

Attention Module (CBAM), which combines channel and spatial attention, is introduced. This module serves to 

suppress background interference and enhance the model's ability to capture global information. Additionally, 

the loss function Wise - IOU, which incorporates a dynamic non - monotonic focusing mechanism, is adopted to 

replace the original Complete Intersection over Union (CIOU) loss function, thus addressing the issue of 

bounding box overfitting.Experimental results demonstrate that, when using the NEU - DET dataset, compared 

with the YOLOv11s model, the mean Average Precision (mAP), the mean Average Precision at the IoU 

threshold range from 0.5 to 0.95 (mAP@0.5:0.95), and the Recall rate have increased by 1%, 1.3%, and 2.9% 

respectively. 
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I. INTRODUCTION  

Steel ranks among the most widely used raw materials in the global manufacturing industry [1], 

playing a pivotal role in the development of modern civilization. Thanks to its outstanding properties, steel has 

become an essential material in construction, transportation, manufacturing, and mechanical applications. 

Notably, the surface quality of steel exerts a profound influence on its performance [2]. Therefore, ensuring the 

surface quality of steel is of utmost significance. 

In the early days, the inspection of steel surfaces predominantly relied on manual methods [3]. 

However, due to the inherent limitations of human energy and attention, these methods suffered from low 

accuracy and inefficiency, consuming substantial amounts of time. As a result, they were unable to meet the 

requirements of contemporary steel surface inspection tasks. 

In recent years, with the rapid advancement of deep learning, an increasing number of object detection 

methods based on deep learning have emerged. These methods can be broadly categorized into single - stage 

networks, such as the Single Shot MultiBox Detector (SSD) [4][5]and the You Only Look Once (YOLO) series 

[6][7][8]. There are also two - stage networks, including Region - CNN (R - CNN) [9], Towards Real - Time 

Object Detection with Region Proposal Networks (Faster R - CNN) [10], and Mask Region - based 

Convolutional Neural Network (Mask - CNN)[11]. Single - stage networks are characterized by high speed but 

relatively lower detection accuracy, while two - stage networks, although slower, offer higher detection 

precision. Among these, the YOLO series of algorithms strike a relatively good balance between detection 

accuracy and speed, making them particularly suitable for industrial defect detection. 

Han J et al. [12] introduced the weighted bidirectional feature pyramid network structure (BIFPN) 

based on YOLOv5. This innovation optimized the fusion of feature maps, enabling the model to integrate 

information across multiple scales and thereby enhancing its ability to recognize and extract defects. Building 

on the work of Han J et al., Wang Y et al. [13] incorporated the channel attention mechanism (ECA) into the 

backbone of YOLOv7. This approach enhanced the importance of key feature channels, improving the 

algorithm's feature - learning capabilities and enabling it to capture more valuable information. Xin H et al. [14] 

further integrated the channel and spatial mixed attention module (CBAM) into YOLOv5, building on the 
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research of Han J et al. This module can adaptively adjust feature maps by simultaneously considering spatial 

and channel features, thus providing a more comprehensive representation of the information within the feature 

maps. Shi J et al. [15] introduced the CBAM into YOLOv5, enhancing the model's focus on small - target 

defects and suppressing the interference of irrelevant information, which effectively improved the model's 

detection accuracy. Zhang L et al. [16] built upon the work of Shi J et al. by integrating the loss function with a 

dynamic non - monotonic focusing mechanism (WIOU), which mitigated the negative impacts of low - quality 

samples and geometric factors. 

The main research contributions of this study are as follows: 

1. The C3k2ECA module is introduced. By integrating the ECA attention mechanism into the C3k2 

module within the Neck component, a minimal number of additional parameters are introduced. Through the 

interaction of information across different channels, this innovation enhances the algorithm's ability to extract 

and recognize the features of small - target defects, thereby improving the detection accuracy. 

2. The BIFPN structure is incorporated. By fusing defect features at various scales, this addition 

strengthens the recognition of defect - related feature information, reducing the occurrences of missed detections 

and false alarms for small - target defects. 

3. The CBAM spatial attention mechanism is adopted. By attenuating the influence of background 

elements in the dataset, this mechanism enhances the recognition of similar defects, further improving the 

detection accuracy of the algorithm. Additionally, the introduction of the WIoU loss function effectively 

addresses the issue of overfitting, thereby enhancing the training efficiency and stability of the algorithm. 

 

II. YOLOv11s model 

YOLOv11 is a YOLO - based detection model proposed in 2024. When compared with the YOLOv8 

version, the network structure of YOLOv11 (as depicted in Fig.  1) has witnessed the following modifications:  

The C3k2 mechanism has been put forward. In the shallow layers of the network, the c3k parameter is 

set to False, which bears resemblance to the C2f structure in YOLOv8. The C2PSA mechanism has been 

introduced. Specifically, a multi - head attention mechanism is embedded within the C2 mechanism. Depth - 

wise separable convolution (DWConv) has been incorporated. Two DWConvs are added to the classification 

and detection head. This addition serves to reduce the computational complexity and the number of parameters, 

thereby enhancing the efficiency of the model. An adaptive anchor box mechanism has been employed. This 

mechanism automatically optimizes the anchor box configuration for different datasets, thus improving the 

detection accuracy.  

YOLOv11 is available in five versions, namely n, s, m, l, and x. In this study, the YOLOv11s version is 

chosen for further improvement.  

As illustrated in Fig.  1: 
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Fig.  1 YOLOv11s Model 
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III. The ECBW-YOLO model 
The ECBW - YOLO model is developed by making improvements on the basis of the YOLOv11s 

model. Initially, the original C3K2 module is replaced by the C3K2ECA module. This substitution is 

designed to enhance the model's capacity to acquire features of complex and irregular targets.  

Subsequently, BIFPN_Concat is employed to replace Concat in the neck component of the model. 

This modification aims to elevate the model's proficiency in dealing with defects of diverse sizes.  

Furthermore, the CBAM attention mechanism is introduced into the neck region. This addition 

serves to strengthen the model's capabilities in feature recognition and aggregation.  

Finally, the original CIOU is supplanted by WIOU, with the intention of improving the accuracy of 

the bounding boxes.  

By means of these four improvements, the accuracy of the model in identifying defect types, sizes, and 

position variations is enhanced. This is graphically presented in Fig.  2. 
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Fig.  2 the ECBW-YOLO Model 

 

3.1 The newly improved C3ECA module 

 

Cheng Z et al. [17] enhanced YOLOv5 by incorporating the ECA module to tackle the challenges 

associated with the identification of small and slender defects. In this study, the ECA module is employed to 

optimize the C3K2 module. The ECA module [18] belongs to the category of channel - level attention 

modules and represents an optimization of the SE module. It presents a novel approach that circumvents 

channel compression by facilitating local cross - channel interactions and adaptively determining the size of 

the one - dimensional convolutional kernel. This innovation leads to a notable improvement in performance. 

Specifically, the ECA module can effectively discern the interdependencies among channels, thereby 

significantly augmenting the feature extraction capabilities of convolutional layers.  

The architecture of the ECA module is depicted in Fig.  3. Initially, the features of the original image 

are fed into the ECA module. Subsequently, global average pooling is carried out across all channels of the 

original image. Thereafter, a rapid one - dimensional convolution of size k is utilized to generate channel 

weights. These weights are then used to compute the corresponding probabilities for each channel. These 

probabilities are subsequently multiplied by the input features of the original image, and the resulting product 

serves as the input for the subsequent layer. The formula for k is： 
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In the formula, K represents the size of the convolution kernel, C is the given channel dimension, and |t| 

odd is the odd number closest to t. 
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Fig.  3 ECA Module 

 

The ECA module is integrated with the C3K2 module to yield a novel C3K2ECA module, as 

presented in Fig.  4. 

In this study, by incorporating the C3K2ECA module, distinct weights are made to correspond to 

different convolutions. This approach serves to enhance the accuracy of recognition. Moreover, through the 

algorithmic interaction of information across various channels, the negative impact on model performance 

caused by dimensionality reduction is mitigated. This renders the algorithm relatively lightweight while 

concurrently maintaining the model's efficiency and computational efficacy.  

Particularly, greater significance is attached to the feature information of small targets. As a result, the 

extraction of small - target features becomes more comprehensive. 
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Fig.  4 C3k2ECA Module 

 

3.2 Weighted Bidirectional Feature Pyramid Network (BIFPN) 

 

Wu Y et al. [19] introduced the Bidirectional Feature Pyramid Network (BIFPN) to enhance the 

model's adaptability to targets at different scales, thereby significantly improving the detection accuracy. In 

this study, the BIFPN network is utilized to enhance the model's ability to recognize small-target defects. 

As depicted in Fig.  5, the Feature Pyramid Network (FPN) fusion network aggregates features in a 

top-down manner. Nevertheless, this approach may result in a decline in the final accuracy because it fails to 

capture sufficient shallow-layer features. The fusion network employed in YOLOv11s is the Path Aggregation 

Network (PANet) structure, as presented in Fig.  6. This structure incorporates an additional bottom-up pathway 

on top of the FPN. Although this can address the limitations of the FPN, it increases the computational 

complexity. 
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Fig.  5 FPN Structure 
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Fig.  6 Structure of PANet 

 

The Weighted Bidirectional Feature Pyramid Network (BIFPN) is a feature extraction network 

optimized based on PANet. It employs both bottom - up and top - down approaches for feature aggregation. 

By introducing learnable weights, it is possible to enhance the detection accuracy.  

As illustrated in Fig.  7, taking the P5 layer as an example, let P5td denote the intermediate feature of 

the P5 layer. The input feature is P5in and the output feature is P5out. The corresponding formula is 
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In the formula,   represents the weights of each layer; Resize denotes the upsampling or 

downsampling operation; Conv represents the convolution operation;   is a very small non - zero number.  

Drawing on its principle, this study adds a channel to connect the input and output, integrating defect 

features at different scales. This approach aims to enhance the detection accuracy of surface defects on steel 

strips. 
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Fig.  7 BIFPN Structure 

 

 

3.3 Channel and Spatial Mixed Attention Mechanism (CBAM) 
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The Convolutional Block Attention Module (CBAM) [20] incorporates a spatial attention 

mechanism on the foundation of the Squeeze-and-Excitation (SE) module, aiming to enhance the model's 

representational capacity.  

The CBAM module encompasses a Channel Attention Module and a Spatial Attention Module. Its 

overall architecture is depicted in Fig.  8. 
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Fig.  8 CBAM Module 

 

The channel attention mechanism can adaptively learn the weights of each channel to enhance the 

model's representational ability. The spatial attention module, on the other hand, focuses on the distinct feature 

representations within each channel to improve the model's accuracy. 

 

The CBAM module infers a one - dimensional channel attention map 

11 C

C RM
 and a two - 

dimensional spatial attention map

WH
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 from the input feature map
WHCRF   . The process can be 

formulated as follows: 
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In the formula,   denotes element - wise multiplication, and F   is the final extracted output. 

The dataset employed in this study has a complex background. Moreover, some defects exhibit a high 

degree of similarity, which causes a decline in the accuracy of the detection algorithm. By introducing the 

CBAM module prior to upsampling, it is possible to mitigate background interference, enhance the recognition 

of defect features that resemble the background, more effectively capture global information features, and 

ultimately improve the performance of the model. 

 

3.4 The loss function of the dynamic non-monotonic focusing mechanism (WIoU) 

 

Li J et al. [21] employed the WIOU loss function to precisely measure the similarity among target 

frames, aiming to improve the defect recognition performance of the model. Han J et al. [22] introduced the 

WIOU loss function to tackle the problem of decreased accuracy resulting from uneven samples and to facilitate 

the accelerated convergence of the network. In this study, the WIoU loss function is adopted to replace the 

CIOU loss function. 

The loss function for the network predicted bounding box coordinates of YOLOv11 is the CIOU loss, 

and its calculation formula is as follows: 
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In the formula,   represents the weighting function, whose role is to balance the parameters. v  is the 

aspect ratio function, which is designed to ensure the uniformity of the height - width ratio. The representation 

of LIOU is presented in Fig.  9. 
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Fig.  9 LIOU Expression Diagram 

 

Annotations: w, h, (X, Y) represent the width, height, and center coordinates of the predicted 

bounding box, respectively; Wgt, Hgt, (Xgt, Ygt) represent the width, height, and center coordinates of the 

ground truth bounding box, respectively; Wi, Hi represent the width and height of the intersection area, 

respectively; Wg, Hg represent the width and height of the smallest enclosing box, respectively. 

Based on the DIOU, the CIOU incorporates the loss related to the scale, length, and width of the 

detection bounding box. This enables the height of the predicted bounding box to match that of the actual one. 

Nevertheless, when the predicted bounding box and the actual bounding box exhibit a linear relationship, the 

penalty term of the CIOU degenerates to zero. Such a situation can be detrimental to the regression loss of the 

bounding box. 

In this study, the WIOU loss function with a dynamic non - monotonic focusing mechanism is adopted 

to substitute the original CIOU. The formula of the WIOU loss function is presented as follows: 
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(10) 

In the formula, the distance focusing mechanism RWIOU serves to magnify the LIOU of the 

moderately sized ordinary anchor boxes. The non - monotonic focusing coefficient r is employed to focus on the 

anchor boxes of ordinary quality. The defining equations of RWIOU and r are as follows: 
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In the formula,   represents the scaling constant that controls the weights of samples, and   is a 

hyperparameter denoting the focus coefficient. Through reducing the contribution of high - quality samples to 

the loss value, r dynamically adjusts the gradient gain of the bounding box. Additionally, in the later stage of 

training, it mitigates harmful gradients, focuses on ordinary anchor boxes, and enhances the positioning ability. 

The outlier degree is defined to characterize the quality of anchor boxes, and its definition is as follows. 
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In the formula, IOU
 represents the dynamic moving average value. Its function is to assign a 

relatively small gradient gain when the value is either large or small, thereby reducing the impact on the 

bounding box. 



IOU
 denotes the threshold between the predicted bounding box and the ground truth bounding 

box. The smaller the value of β, the higher the quality of the anchor box; conversely, the lower the quality. 

The WIOU loss function balances the impacts of high - quality and low - quality anchor boxes on the 

model. It enhances the model's generalization ability and optimizes the model's performance. In this paper, the 

WIOU loss function is employed to substitute the original CIOU loss function for model optimization. 

 

IV. Experimental Results and Analysis 

 

4.1 Evaluation criteria 

 

Regarding the criteria for evaluating the steel surface inspection model, the commonly adopted ones 

are as follows: Average Precision (AP), Mean Average Precision (mAP), Frames Per Second (fps), Number of 

Parameters, Precision, and Recall. Herein, AP represents the area under the Precision - Recall (PR) curve, which 

is utilized to assess the detection accuracy of each type of defect. mAP is the mean value of the AP of all types, 

serving to evaluate the detection accuracy of all defects. The expression is given by: 
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In the formula, P denotes the precision and R represents the recall. The corresponding formulas are 

given as follows: 
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In the formula, TP refers to the number of targets that are correctly detected, FP represents the number 

of targets that are detected incorrectly, and FN stands for the number of targets that are missed during the 

detection process. 
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4.2 Experimental environment and dataset 

 

The experimental environment employed in the course of this experimental study is as follows: The 

operating system is Windows 10; the GPU is NVIDIA GeForce GTX 1650; the compilation environment 

consists of Python 3.8.18, PyTorch 1.10.0, and CUDA 10.2. During the model training process, the dataset was 

partitioned into a training set, a validation set, and a test set at a ratio of 8:1:1. The experimental parameter 

settings are presented in Table 1 below. 

 

Table 1 Experimental Parameter Settings 

Name Parameter settings 

Image size 224 

Batch size 8 

Epochs 300 

Workers 4 

close-mosaic 10 

 

The dataset adopted in this experiment is the publicly released NEU - DET dataset by Northeastern 

University. This dataset encompasses six defect characteristics, namely rolled - in scale (RS), crazing (Cr), 

pitted surface (PS), patches (Pa), scratches (Sc), and inclusions (In). Each type of defect has 300 images, 

resulting in a total of 1800 images in the dataset. To enhance the robustness of the images, operations such as 

brightening and darkening were carried out on the dataset. The results of the quantity processing for each type of 

defect are presented in Table 2 as follows. For the purpose of effective model training, the dataset was 

partitioned into a training set, a validation set, and a test set at a ratio of 8:1:1. 

 

Table 2 Dataset Processing 

Defects Original Brightening and darkening processing 

rolled-in_scale(RS) 300 900 

crazing( Cr) 300 900 

pitted_surface (PS) 300 900 

patches(Pa) 300 900 

scratches(Sc) 300 900 

inclusion(In) 300 900 

All 1800 5400 

 

4.3 Melting experiment 

 

To validate the effectiveness of the improvements put forward in this paper, ablation experiments 

were devised on the NEU - DET dataset, with YOLOv11s serving as the foundation. To guarantee the 

consistency of parameters throughout the experimental process, no pre - trained weights were configured.  

In the table, "a" represents the utilization of the YOLOv11s module; "b" denotes the incorporation of 

the C3K2ECA module into the YOLOv11s module; "c" signifies the addition of both the C3K2CEA module 

and the BIFPN structure to the YOLOv11s module; "d" indicates the introduction of the C3K2ECA module, the 

BIFPN structure, and the WIOU loss function to the YOLOv11s module; and "e" stands for the module 
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designed in this paper. The experimental results are presented in Table 3 as follows: 

 

Table 3 Ablation Experiments 

Class 
AP 

Precision mAP mAP@0.5:0.95 recall 
RS Cr PS Pa Sc In 

a 96.0 92.3 96.2 99.3 98.3 97.4 93.6 96.6 67.0 91.9 

b 96.3 93.8 96.5 99.2 98.9 97.2 93.8 97.0 67.0 93.6 

c 97.2 92.8 96.0 99.2 98.9 97.5 93.8 96.9 67.3 93.8 

d 97.5 95.0 96.6 99.2 99.0 97.4 93.5 97.4 67.9 94.4 

e 97.4 94.8 96.8 99.4 99.0 98.0 93.6 97.6 68.3 94.8 

 

The result analysis reveals the following: In comparison to the experiments in Group a, in the 

experiments of Group b, Precision increased by 0.2%, mAP (mean Average Precision) increased by 0.4%, 

mAP@0.5:0.95 remained unchanged (an increase of 0%), and recall rose by 1.7%.  

For Group c experiments relative to those of Group a, Precision was enhanced by 0.2%, mAP 

increased by 0.3%, mAP@0.5:0.95 increased by 0.3%, and recall improved by 1.9%.  

Regarding Group d experiments as compared to Group a, Precision decreased by 0.1% (an increase 

of - 0.1%), mAP increased by 0.8%, mAP@0.5:0.95 increased by 0.9%, and recall increased by 2.5%.  

Finally, in the case of Group e experiments in contrast to Group a, Precision showed no change (an 

increase of 0%), mAP increased by 1%, mAP@0.5:0.95 increased by 1.3%, and recall increased by 2.9%. 

 

4.4 Comparative test 

 

To verify the effectiveness and superiority of this algorithm in steel material detection, the dataset was 

brightened and darkened respectively, and then compared with other mainstream detection methods as shown in 

Table 4 below: 

 

Table 4 Comparative Experiment 

Class mAP Precision mAP@0.5:0.95 recall Model size/M GFLOPs/G 

SSD 93.5 91.1 69.5 85.1 95.3 61.1 

RT-DETR 96.2 93.0 74.2 91.9 16.2 103.5 

YOLOv3 95.0 92.4 68.4 91.2 204.8 283.0 

YOLOv5s 94.5 92.2 65.0 91.9 13.9 15.8 

YOLOv6 94.8 92.4 71.1 90.9 32.0 44.0 

YOLOv8s 95.2 93.1 71.3 90.3 21.9 28.4 

YOLOv11s 96.6 93.6 67.0 91.9 19.2 21.3 

ECBW-YOLO 97.6 93.6 68.3 94.8 24.2 26.3 

 

Based on the analysis of the experimental results, when compared with the SSD, RT - DETR, 

YOLOv3, YOLOv5s, YOLOv6, YOLOv8s, and YOLOv11s models, the mAP of the algorithm proposed in this 

study has witnessed increases of 4.1%, 1.4%, 2.6%, 3.1%, 2.8%, 2.4%, and 1% respectively. The Precision has 

been enhanced by 2.5%, 0.6%, 1.2%, 1.4%, 1.2%, 0.5%, and 0% respectively. The recall has risen by 9.7%, 

2.9%, 3.6%, 2.9%, 3.9%, 4.5%, and 2.9% respectively. 

In light of the complexity of the models, it can be observed that the model developed in this paper, 

which is an improvement upon YOLOv11, has significantly fewer parameters, a smaller model size, and lower 

GFLOP values compared to current state - of - the - art YOLO algorithms such as YOLOv8. Thus, the model 

presented herein demonstrates excellent detection performance despite having fewer parameters compared to 

existing advanced algorithms, rendering it more suitable for general industrial inspection scenarios. 

 

4.5 Visual qualitative analysis 

 

The algorithm employed in this study was compared with YOLOv11s using the dataset that had 

undergone brightening and darkening treatments. The outcomes are presented in Fig.  10 and Fig.  11. The area 
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bounded by the curve, the vertical axis, and the horizontal axis corresponds to the Average Precision (AP) value 

of the respective category. The nearer the curve approaches the upper - right corner, the more favorable the 

performance, and the greater the AP value. The blue curve denotes the mean Average Precision (mAP) of the 

six types of defects, while the other colored curves represent the AP values of other individual defects. The AP 

values of each defect type exhibited variations, and the mAP value was optimized. 

 

 
Fig.  10 PR Curve of YOLOv11s 

 

 
Fig.  11 PR Curve of ECBW-YOLO 

 

As depicted in Fig.  12, a comparison is made between the approach presented in this study and other 

mainstream algorithms. Evidently, the proposed method has effectively decreased the missed detection rate of 

small targets, leading to a notable enhancement in accuracy.  

Specifically, the refined model has alleviated the issue of missed detections in steel defect inspections, 

achieving more precise positioning. This improvement not only reflects the effectiveness of the model 

optimization but also demonstrates its potential application value in practical steel defect detection scenarios. 
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Fig.  12 Comparison of Effects 

 

V. Conclusion 

This study presents a steel defect detection algorithm grounded in the ECBW - YOLO model. Aiming 

at the prevalent issues in steel defect detection, such as missed detections of small targets and suboptimal 

detection quality, modifications have been made to the YOLOv11s model.  

Specifically, the C3K2ECA module and the BIFPN network structure are incorporated. This 

integration facilitates the algorithm to more effectively fuse information features, thereby enhancing its ability to 

precisely locate small targets and concomitantly reducing the missed detection rate of such targets. The 

introduction of the CBAM attention mechanism module serves to accentuate the feature information of target 

defects while attenuating the influence of background factors, thus enabling more accurate localization of the 

feature information of defect targets. Additionally, the WIOU loss function is adopted to supplant the CIOU loss 

function, which not only improves the detection accuracy but also addresses the problem of overfitting in 

boundary detection boxes. 

Experimental findings indicate that, in comparison with existing models, the model refined from 

YOLOv11s in this research demonstrates a notable improvement in both mAP (mean Average Precision) and 

Recall. Moreover, it successfully mitigates problems such as missed detections and low detection accuracy for 

small - target defects. The model also exhibits enhanced lightweight characteristics in terms of model size and 

parameter count, thereby meeting the demands of industrial production. 

Notwithstanding these achievements, there remain challenges in achieving high - precision detection 

for certain defects, such as cracks and pitting. The data employed in this study is sourced from a public dataset, 

and it is well - recognized that the improvement of detection accuracy is significantly influenced by the data 
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collection environment. In real - world industrial applications, numerous factors can impact the detection 

accuracy of the model. These factors include light intensity, lighting angle, humidity, and noise, among others, 

to which the detection accuracy is particularly sensitive. 

Looking ahead, our future endeavors will involve collecting a more extensive range of data samples 

encompassing the aforementioned factors for model training. While maintaining a focus on detection accuracy, 

we will also strive to enhance the model's lightweight properties and detection speed, rendering it more 

conducive to industrial applications. The primary areas of focus for future research are as follows: 

In the realm of steel surface defect detection, the process of defect annotation for images typically 

requires the expertise of professionals, which incurs substantial labor costs. Moreover, the quantity of data 

samples significantly influences the performance of the model. Consequently, in the future, we aim to leverage 

unsupervised learning techniques to substitute supervised learning, thereby alleviating the challenges and costs 

associated with data generation. 

Regarding the detection model, we intend to introduce more efficient detection heads. These heads will 

endow the model with the capacity to recognize information features based on the size, shape, and position of 

the targets, thereby enhancing detection accuracy. Additionally, we will incorporate more lightweight 

convolutional operations to further streamline the model while effectively extracting feature information across 

diverse scales, thus improving the overall detection performance. Furthermore, we will explore the integration 

of superior attention mechanisms that can autonomously adjust the mechanism weights in accordance with the 

characteristics of target defects, thereby facilitating more effective target detection. 
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