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ABSTRACT:The Additive Main Effects and Multiplicative Interaction (AMMI) model is useful for studying 

patterns of genotype responses between environments in agronomic assays. The main objective of this work was 

to compare the Frequentist-AMMI and Bayesian- AMMI approaches and to highlight the main differences that 

arise between these analysis procedures. For that, a simulated scenario was considered in which 9 genotypes 

were evaluated in 14 environments. The results showed the great flexibility of the Bayesian method to 

incorporate inference to the model parameters, especially those that describe the genotype interaction by 

environments in the biplot graphic. 
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I. INTRODUCTION 

The linear-bilinear model of Additive Main Effects and Multiplicative Interaction(AMMI) is used to 

analyze data organized in a double entry table in which the interaction between two factors is important for the 

study. In this sense, AMMI found great applicability in the final stages of plant breeding in which, as a rule, 

different genotypes are evaluated in various environments composing a bidirectional set of multi-environmental 

trials (MET). MET data are fundamental for the analysis of the genotype environment interaction (GEI), which 

imposes great difficulties on the breeder's work in the identification, selection and recommendation of superior 

genotypes. 

In the AMMI analysis, first the main effects are adjusted by least squares, and then the estimates of the 

bilinear terms of the model are obtained by the singular value decomposition (DVS), applying the matrix of 

non-additivity errors to the main effects. The DVS makes it possible to simplify the data, and takes into account 

the principle of parsimony, capturing the pattern of the original data by an approximation of a smaller dimension 

matrix [5-6]. Another prerogative over bilinear models is the possibility of directly accessing genotypic 

adaptability and stability through biplot graphical representation [7,11]. 

 Currently, has been observed an increase in the application of the Bayesian paradigm to the analysis of 

linear-bilinear models, especially to the AMMI model. The first work on this topic was proposed by [25], which 

showed how to conduct the adjustment of the AMMI from the Bayesian perspective by sampling the parametric 

values using the Markov Chain Monte Carlo (MCMC). Since then, appear important contributions to the 

method [4,10,14-17,22-23,28].The main objective of this article is to compare the frequentist-AMMI with the 

Bayesian-AMMI in a simulated scenario. 

 

II. MATERIAL AND METHOD 

The set of simulated data for this work was produced from Gaussian distributions. Wherein, the stable 

genotypes were generated with averages centered on zero and small variability, whereas for the unstable 

genotypes, it considered an average other than zero and high variance. Altogether 9 (G) genotypes (4 stable and 

5 unstable) were generated in 14 (E) environments. The design considered was randomized blocks. 

The AMMI model in vector notation can be written by: 
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where y  is the vector containing n phenotypic responses; 
1lβ  and 

1rg are vectors of main effects of 

environments and genotypes, respectively, with l c b   (c the number of environments and b the number of 
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blocks) and r number of genotypes, or cultivars, evaluated. The 
k factor is the k-th singular value and 

kα and

kγ  are the respective genotypic and environmental singular vectors. The matrices 
1X , Z  and

2X  are the 

design and ε  is the experimental error vector such that 
2~ ( , )eN ε 0 I ; where 0  is the null vector, I the ide 

identity matrix  (n x n) and residual variance. 

 The model (1) is subject to orthonormality restrictions in relation to the singular vectors 

 0k k k k α α γ γ and  ' ' 1; 'k k k k k k  α α γ γ , as well as the relation of order of the singular values 

 1 1 t    being {1,2, , }k t  with min{r 1,c 1}t    . 

 The prior distributions used in this approach are the same as those found in [15]: 
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The likelihood function is given by: 
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The joint posterior distribution is obtained by combining likelihood with the joint prior densities, being 

written as: 

           

     

2 2 2 2 2 2 2

2

1

| | , | , | , | , | ,

| ,
k k

e g g g g g e e e

t

k k k

k

p p p p p v S p v S

p p p

 

 

    

 



 



Φ y y θ g μ β μ

μ α γ
 

on what 2 2( , , )g e Φ α, γ,λ,g,β  

The conditional posterior distributions are obtained from (3) by algebraic calculations under the 

hypotheses assumed for the hyperparameters and are as follows: 
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  1( | others)
kk kp exp k  γγ γ Λ y X β Zg

• • ,   2k kdiagγΛ Zγ X . 

 The densities of the singular vectors are proportional to a Von Mises-Fisher (VMF) which is a 

spherical distribution [13]. However, these vectors are distributed only in a restricted subspace, as they must be 

orthogonal to the other vectors. Sampling with correct space is performed from auxiliary variables in the 

corrected subspace using orthogonal transformation [12,25]. More details on algebraic calculations, as well as 

on the sampling process can be found in [15]. 

 Conditional densities are all known and allow direct sampling. Thus, a Gibbs sampler was used, whose 

steps are described by [22].The convergence of the chains was monitored by the criteria of [8,19], implemented 

in the Bayesian Output Analysis (BOA) package[24]. 

Point estimates were obtained by means of the generated MCMC chains. Regions of Highest Posterior 

Density (HPD) were built for univariate parameters. For genotypic and environmental scores, bivariate regions 

with 95% credibility were incorporated by the method of [9].  

The selection of the model in the classical approach was performed by the Fr test [1]. All analyzes of 

this work were performed with the software R [18]. 

 

III. RESULTS AND DISCUSSION 

Initially, a joint analysis of variance was performed for groups of experiments and the results are 

shown in Table 1. As can be seen, the effects of genotypes and interaction are significant according to the F test 

applied at the level of 1% significance. As the GEI is significant, general conclusions about the simulated 

genotypes cannot be made and they must be evaluated within each environment. Therefore, the application of 

the AMMI model is justified. 

 

Table1 -Table of joint analysis of variance for groups of experiments. 

*: significant effect by the F test at the level of 1% probability 

 

Table 2 is presented the adjustment of the AMMI model. As possible to observe, the first two terms 

explain about 70% of the total GEI variation. According to the Fr test, the AMMI-5 model would be the one to 

be selected to analyze the data. 

 

Table 2 -Summary of adjustment of the AMMI model for fixed effects and result of the model 

selection according to the Fr test. 

*: significant effect by the Cornelius' Fr test at the level of 1% probability 

 

The AMMI-2 biplot is shown in Figure 1. The interpretations are based on the properties of the internal 

product between the markers in the main plane determined by the first two main components (PC1 and PC2). 

Points further away from the origin indicate that the associated genotypes (or environments) have more 

 Df Sum Sq Mean Sq F value Pr(>F) 

Enviroment 13 259.4 19.958 1.7295 0.1094 

Blocks (Env.) 28 323.1 11.539 0.9720 0.5104 

Genotype 8 1092.3 136.537 11.5002 <0.0001* 

Env. x Gen. 104 13908.4 133.735 11.2642 <0.0001* 

Residuals 224 2659.4 11.873 - - 

 Perc. % Cum. Perc% Df Sum Sq Mean Sq Fr value Pr(>F) 

AMMI1 45.17 45.17 84 6282.327 90.786 7.646 <0.0001* 

AMMI2 25.57 70.74 66 3556.884 61.654 5.193 <0.0001* 

AMMI3 14.45 85.20 50 2010.065 41.182 3.468 <0.0001* 

AMMI4 8.23 93.43 36 1145.042 25.391 2.138 0.0004* 

AMMI5 4.04 97.47 24 561.702 14.682 1.236 0.212 

AMMI6 1.84 99.30 14 255.636 6.910 0.582 0.878 

AMMI7 0.48 99.78 6 66.565 5.030 0.423 0.863 

AMMI8 0.22 100.00 0 30.185 0 0 1.00 
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expressive contributions to the effect of the interaction whereas those located close to the origin are 

characteristic of stable genotypes (or environments), that is, they have little contribution to GEI. 

 
Fig. 1 -AMMI-2 biplot for genotypic and environmental scores from the simulated data set. 

 

 Genotypes G7 and G8, together with environments E6, E8 and E13, are those with the greatest 

contributions to GEI. On the other hand, the environments E3 and E9 and the subgroup of genotypes {G1, G2, 

G3, G4} have few contributions to the effect of the interaction, since they are closer to the origin. 

Acute angles indicate specific adaptability between genotypes and environments; obtuse angles 

indicate unfavorable combinations (lack of adaptation) and right angles declare that that specific combination 

did not contribute to GEI. The following positive combinations between genotypes and environments can be 

suggested: G8 to subgroup {E6, E13}; subgroup of genotypes G5 to the environmental subgroup {E8, E12}; G6 

to the subgroup {E1, E2, E7, E11}; G7 to the subgroup {E4, E5} and G9 to the subgroup {E10, E14}. Stable 

genotypes {G1, G2, G3, G4}, in turn, have wide adaptation. 

For the application of the Bayesian paradigm, Markov chains were generated with 85,000 iterations, 

discarding the first 5,000 and thinning every 10, leaving 8,000 observations for the sampling process. Good 

convergence properties were obtained from the criteria of [8,19]. Figure 2 presents graphs of the traces of the 

components of variance, whose behaviors corroborate the results of the criteria used for monitoring 

convergence. 
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Fig. 2 -Traces and densities of the chains generated by the posterior of the components of variance 

 

 Table 3 shows the posterior means together with the HPD credibility regions of the singular values and 

components of variance and the solutions of the frequentist-AMMI model. There is a clear shrinkage effect of 

Bayesian predictions compared to DVS solutions of conventional AMMI model, which is more marked from the 

sixth component. This fact has been observed in different studies [4,12,15,22]. According to [12]bayesian 

predictions, from non-informative priors, correct the bias of the OLS estimates, as well as those obtained by the 

shrinkage estimators described by [2-3]. The shrinkage method proposed by [22], in the Bayesian context, offers 

even more shrinking estimates than the fixed effects shrinkage method or the method applied in this study. 

 

Table 3 - Estimates of the ordinary least squares (OLS), the posterior mean, standard deviation and 

credible intervals (95%) for the singular values 

 

Parameters OLS estimates Mean Standard deviation Lower Limit Upper Limit 

1 45.7614 44.9449 2.0152 41.1218 49.0659 

2 34.4329 33.4402 2.0414 29.5273 37.4566 

3 25.8847 24.6668 2.0569 20.3300 28.3938 

4 19.5366 18.0013 2.1017 13.7973 21.9857 

5 13.6833 11.6555 2.2409 7.2938 16.1089 

6 9.2310 5.3473 2.7231 0.0103 9.6459 

7 4.7104 1.8618 1.4896 0.0000 4.8035 

8 3.172 0.8163 0.8504 0.0000 2.5616 

2
g 

- 3.1548 2.8142 0.6982 0.6982 

2
e 

- 11.8849 1.1584 9.8856 14.3549 

 
 A means along with regions of credibility at 95% probability for the main effect of genotypes are 

shown in Figure 3. The means are ranked from left to right and intersections between the intervals indicate 

similar effects between the respective genotypes. It is possible to highlight that the G2 and G9 genotypes have 

statistically positive effects. 

 Here, another difference is highlighted in relation to the fixed AMMI, the genotypes were treated as 

random. In the Bayesian perspective, all parameters are treated as random variables. Assuming genotypes to be 
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random provides more accurate estimates [20]. In the classic AMMI analysis, on the other hand, all effects are 

taken as fixed. 

 As the simulated set for this analysis is balanced, there were no differences regarding the ranking of 

OLS estimates from the AMMI-frequentist analysis (data not shown). 

 
Fig. 3 -Posterior means and HPD regions, at 95% credibility, for genotype main effects. 

 

 In terms of selection, it is still necessary to carry out an assessment regarding stability and adaptability. 

The biplot of the posterior estimates is shown in Figure 4. This is perhaps the most striking difference (to be 

considered in this work) between frequentist-AMMI and Bayesian-AMMI, which is the flexibility to incorporate 

inference into the biplot. Bayesian-AMMI provides a direct parametric method to incorporate inference to the 

biplot by building regions of credibility to genotypic and environmental scores. This has been one of the major 

limitations with respect to classic biplot analyzes that, in most cases, do not consider any uncertainty measures 

regarding the plotted scores [27]. In addition, frequentist methods used for such purposes are susceptible to 

criticism for using restrictive assumptions such as asymptotic normality of individual scores, or even 

problematic computational procedures in non-parametric methodologies [26,15]. 

 Bivariate regions were built at a 95% credibility level. Regions that include the origin of the biplot 

indicate that the respective genotypes (or environments) do not effectively contribute to interaction and were not 

plotted to simplify possible interpretations. Positions and overlaps of the regions in the biplot (determined by the 

first two main axes) are used to identify separable subgroups of genotypes and environments related to the effect 

of GEI, as well as to suggest adaptability of genotypes to specific environments. The same pattern determined 

by the frequentist biplot can be observed in the posterior biplot, with the difference that the latter allows to 

separate subgroups of genotypes and environments (with the same pattern in relation to GEI) using levels of 

credibility. 
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Fig. 4 - Bivariate regions, at 95% credibility, for genotypic and environmental scores on the AMMI-2 

biplot. 

 

 Combining the information in Figure 3 with the biplot shown in Figure 4, it can be concluded that G2 

is stable and, therefore, widely adapted and recommended. On the other hand, G9 contributes to interaction and 

suggests adaptability for the E10 and E8 environments. The other unstable genotypes have no interest in yield, 

and for two of them there are significantly negative main effects. An exception would be G7, whose effect 

would not be statistically different from the general average, but it has a great GEI effect and suggests 

adaptation for both the subgroup {E1, E2, E7, E11} and for E4 and E5. 

 Although not addressed here, the Bayesian methodology still offers the recognized advantages of 

treating unbalanced data and with heterogeneity of variance and the possibility of using information in addition 

to that present in the experimental data as demonstrated in recent works [17,21,23]. This also poses problems for 

analyzes that consider effects as fixed. 

 

IV. CONCLUSION 

Bayesian analysis allows inference to be directly incorporated to all parameters of the AMMI model by 

means of joint posterior distribution. It specially offers a flexible parametric method to incorporate uncertainty 

into the biplot. Such information made it possible to make more critical decisions in relation to the purely 

descriptive method of the frequentist biplot. 

As observed, the information obtained from the regions of the posterior credibility for the genotype 

effects and GEI interaction, made it possible to analyze the stability and declare which genotypes and / or 

environments are significantly stable. Bayesian-AMMI also makes it possible to separate genotypes and 

environments into homogeneous subgroups with the same interaction patterns using levels of credibility. 

Notwithstanding all these advantages, the referred method is still little used and more work, such as the 

one presented here, is necessary to publicize the method in order to make it a popular tool in the analysis of 

MET data. 
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