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Abstract--A numerical model on the flexibility method in the case of a multilayer beam finite element has been developed 

and the contributions to its recent developments being made at Mechanical laboratory, Department of physics, Faculty of 

Sciences Rabat (Morocco). The results of the experiments and those of numerical calculations were concordant in the 

case of quasi-static loading. These results were based on the approach "finite element" coupled with a non-linear model 

[23]. Firstly, we present here the results based approach "finite element" related to the analysis of a bending square plate 

under concentrated and uniform load, clamped   or simply supported on the contour. On the other hand, we present some 

results which we evidence to the problem related to the shear locking. The numerical model is based on a three-

dimensional model of the structure seen here as a set of finite elements for multilayered plates multi cellular matrix 

(concrete) and a set of finite element fibers for reinforcement. The results obtained confirm the ability of these tools to 

correctly represent the behavior of quasi-statics of such a complex system and presage the deepening of a digital 

tool developed. 

Keywords––multicellular multilayer plate, numerical approach, Finite element flexible 

 

I. INTRODUCTION 
             The phenomenon related to blockade by shear (or appearance of a parasitic stiffness) is a numerical problem that 

drew attention of many researchers in the past twenty years and an abundance of solutions which has been discussed in [3, 9, 

10, 11, 12, 19, 20, 22].One way to avoid the appearance of shear locking and thus make the solution independent of the 

slenderness ratio (the ratio of length L / thickness h) is to calculate the terms of the stiffness matrix by integrating accurately 

the relative terms bending and sub-integrating the terms relating to shear [4,5,6,8,13,14,15,16,17,21 ,22].To improve this 

phenomenon related to the numerical computation and propose a more efficient solution, we developed a model based on the 

flexibility method [23]. The model is formulated on the basis of the forces method by an exact interpolation stresses [18]. 

This makes it possible to calculate the flexibility matrix, which is the inverse of the stiffness matrix. The purpose of this 

study is the modeling of the structural response of the sails carriers subjected to seismic effects using a comprehensive three-

dimensional numerical model using a nonlinear finite element approach coupled with a damage model developed for the 

behavior of concrete material. In this second paper, drawing on the results of the first article and those of [1,2 ,7], we present 

only some results related to the analysis of a homogeneous square plate in bending subjected to  a concentrated and uniform 

load. 

II. MODELING 
Complementary to the trials and their interpretation, numerical modeling of this situation type has several 

advantages. In this case, it already developed an ambitious and effective model capable of taking into account the different 

aspects of this complicated problem, including the quasi-static and dynamic loading. Then after this satisfactory model, it 

has to constitute a way to complement the experimental measurements by providing new data. As such, it should contribute 

to a better understanding of the phenomena involved and to further provide a basis for dimensionality development methods. 

1.  METHODOLOGY 

An immediate challenge before addressing the simulation of such problems is to choose the right methodology. 

The philosophy retained here is to realize the contribution of research in civil engineering to respond in a context of 

operational engineering. The choice was made on the use of finite element plate‟s multilayer multistage three nodes and two 

degrees of freedom per node. 

A realistic numerical prediction of the structural response of such a structure requires a rigorous three-dimensional 

geometric model of the system components. This model and its numerical analysis are implemented in the finite element 

code RE-FLEX. 

Then, the plate is meshed by including its geometry in a full mesh adapted to the different areas of the problem (it 

is discredited into layers and its thickness h in cells along x and y the surface) [Fig.1].  



Multicellular Multilayer Plate Model: Numerical Approach And Phenomenon… 

48 

 
Figure 1 - Finite Element Model: Efforts resulting in a plate 

 

Where ,xx yyN N  represent the normal forces and xyN  the shear plane. ,xx yyM M  represent the bending moments and 

xyM torque. ,x yT T  are the transverse shear stresses. 

 

2.   CALCULATING THE ELEMENTARY FLEXIBILITY 

The exact interpolation functions are obtained by writing the various external forces of any point of the finite 

element, which here are the internal forces of the structure, according to the nodal reduced effort. Thus, we determine the 

matrices representing the exact interpolation functions of effort. The external forces of 'finite element' are supposedly similar 

with the same nature as the internal forces of the same element. 

One of the methods to calculate the external forces of "finite element" is the linearly interpolated from the equilibrium 

equations of the system. Notably in our study efforts are assumed constant at every point of "finite element" and moments 

vary linearly as a function of  

its variables (x and y in case of a plate). Thus, for a triangular plate finite element IJK, we obtained the following 

relationships: 

- The matrix that binds the membrane and bending efforts  on any point with the reduced efforts is defined by: 

       , , , , , , ( , )
TT r

mf xx yy xy xx yy xy cmf IN M N N N M M M D                    (1) 

- The matrix that binds the shear efforts on any point with reduced efforts is defined by: 

      ,
T

r

x y ct IT T T b                                                                                                  (2) 

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

cmf

i j k

i j k

i j k

D
m m m

m m m

m m m

 
 
 
 

     
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 
 
 
 

                                (3) 

With     1im     ,    jm      and  km   
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1 ( ) ( ) ( )I K J J I K K J Is y x x y x x y x x       is twice the area of the triangle IJK 

   1 2 3, , , , , , , , , , ,
I I I J J J K K K

T
r

I xx yy xy xx yy xy xx yy xyN N N M M M M M M M M M         

(5) 

Where   r

I  the vector of nodal efforts reduced, ( , )cmfD     and  ctb  are the matrices that represent accurate 

interpolation functions of the efforts membrane bending and shear respectively in the absence of apportionment. The 

stiffness matrix is simply the inverse of the flexibility matrix. 

 cmf and  ,x yT T  are respectively the vector normal forces, effort membrane, bending moments, twisting moment and 

shear forces applied to the cell. 

The direct connection of the finite element provides the stiffness matrix of elementary model in the local 

coordinate expressed by: 

   
1Te e

flxK R F R


                                                                                        (6) 

 
11

( ) ( )e pla pla

flx flx flxF F cmf F cis


                                                                      (7) 

Where ( )pla

flxF cmf   and ( )pla

flxF cis    are respectively the flexibilities of the matrices membrane combination 

bending and shearing of the plate. R  is the transition matrix to the system without rigid modes of deformation within five 

degrees of freedom, whose force field is represented by equation (8) and the corresponding displacements  q are defined 

(eqt.9): 

   
Tplaq r

IF R                                                                                    (8) 

    eq R u                                                                                     (9) 

With 
plaqF    the external force exerted by a plate finite element nodal loads equivalent to the same element and eu the 

corresponding vector of nodal displacements and is given by equation (10): 

   0 0 0 0 0 0 , 0 0 0, , , , , , , , , , , , ,
I I I I I J J J J J K K K K K

T
e

x y x y x yu u v w u v w u v w                                   (10) 

 

Remark: In the simple case of a beam with two nodes with three degrees of freedom [23] the force vector corresponds 

exactly to the demands of the nodal finite element beam. 

 

Flexibility matrices concerning the plates are given by: 
cells

1

1

( ) ( , ) ( , ) ( , )
m

T
pla

flex IJK cmf cmf K K cmf

k

F cmf S D H D d d       


 

                                (11) 

 

     
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1
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( ) ( , )
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flex IJK ct ct K K ct

k

F cisaill S b H b d d   


 

                                                     (12) 
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The matrices 
1

( , )cmf K KH  


   and  
1

( , )ct K KH  


 are matrices named flexibilities membrane bending and shear 

respectively: 

 ( , ) ( , ) ( , )cmf K K cmf K K cmf K KD H d                and      ( , )ct ct K K ctb H d   
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1i i ih z z   ,  1

1
( )

2
i i iz z    

The matrices ( , )cmf K KH     and  ( , )c K KH    respectively represent the stiffness of membrane bending and 

shearing of the cell k of the plate, hi and Zi represent respectively the thickness and position Z layer i of the cell, iE  and i  

being respectively the Young's modulus and Poisson's ratio of the corresponding layer. 
'k   is the shear correction factor. 

   '( , ) , , , , ,cmf K K xx yy xy xx yy xyd e e k k     is the vector of plane deformation, and membrane of curvature 

experienced by a cell, and    ,ct x yd    is the vector of deformations of the distortion in the planes (x, z) and (y, z). 

 

3. PRESENTATION OF AN ELEMENT DKT (Discrete Kirchhoff Triangle) 

The DKT element defined in [1] is a finite element with three nodes and three degrees of freedom per node. It is 

considered in this article, as a finite element with three nodes and five degrees of freedom per node. 

The rotations x , y  are interpolated in a parabolic manner and the transverse displacements 0 0 0, ,u v w are interpolated 

in a linear manner [1, 2]: 

2

1 1
i k

n n

x i x x k

i k n

N P  
  

      ,

2

1 1
i k
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y i y y k

i k n

N P  
  

   , 
kx k kP P C  and 

ky k kP P S  

0 0

1
i

n

i

i

u N u


 , 0 0

1
i

n

i

i

v N v


 , 0 0

1
i

n

i

i

w N w


  

Where kC , kS  are the direction cosines, k is the middle of respective sides of the triangle, and are given by the side 

ij: ( ) /k j i kC x x L  ,  ( ) /k j i kS y y L   and  
2 2( ) ( )k j i j iL x x y y     

Where n is the number of nodes of the finite element, in the case of a triangular element 3n   and functions iN and kP  

are given by [1, 2]:  

1 1N       ,   2N  ,   3N  ,   4 4P  ,   5 4P    and  6 4P    

The expression of k  according to the nodal variables of nodes i and j is [1]: 
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3 3
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4 4

x

i k k k m m mN P C S P C S    

1
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y
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L L

  , 2 3

y x

i iN N , 
2 2

3

3 3

4 4k m

y

i i k mN N P S P S    for 1,...i n  

III. ANALYSIS OF A UNIFORM PLATE WITH DKT AND FLEXIBILITY (FLX) 
At first glance, the figure 2 represents the results obtained with FLX as we analyze a homogeneous square plate 

subjected to uniform load simply supported or built on the contour, for different slenderness L/h (5 to 1000). The plate is 

meshed with 128 (N = 8) rectangular isosceles elements (§ 2.2). The results are virtually identical with those obtained with 

DST and Q4γ [1] for the recessed plate (Figure 2.a). For the simply supported plate there appeared an error of 

about 0.5%  (Figure.2.b). 

 

 
Figure 2-homogeneous square plate with load uniform. Bending in the centre based on  L/h 

(
3 2/12(1 )D Eh   , 0.3  ,

' 5/ 6k  ) 
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In a second step, we describe in Figures 3 to 7 some results [1, 2] and on the analysis of a homogeneous square plate 

subjected to a concentrated load at the center or simply supported and built on the contour. A quarter of the plate is meshed 

with 2, 8, 32, 128 (N = 1, 2, 4, 8) rectangular isosceles DKT elements (§ 2.3) and FLX (§ 2.2). These elements have five 

degrees of freedom per node and are of Kirchhoff (no transverse shear energy, the results are independent of L/h) for DKT 

elements and flexible elements taking into account of transverse shear (FLX) for / 24L h  (figures 6 and 7). Figures 4 

and 5 we presents the results obtained with FLX as we analyze a homogeneous square plate subjected to concentrated load 

simply supported or built on the contour, for different slenderness L/h (5 to 1000) for both types of mesh (there is a thin 

outlook  of influence  mesh ). The plate is meshed with 2, 8, 32 and 128 (N = 1, 2, 4,8) rectangular isosceles FLX elements 

(§ 2.2). Convergence can be seen for N = 8, that is to say, for a mesh of 128 elements. we observe  a occurrence of an error, 

for the clamped plate,  in the order of 0.5%  mesh  A (Figure 4.a) and 0.56%  mesh B (Figure 5.a) and simply 

supported plate 0.3% mesh  A  (Figure 4.b) and 0.31% mesh B (Figure 5.b). In Figure 6, we provide the percentage 

error of the deflection at the center depending upon „N‟ number of divisions per half side. There is a monotonic convergence 

with FLX (FLX model is a consistent shift, the total potential energy 
EF exactP PE E  and as

1
.

2
P cE w P  , we observe 

that    
EF exact

c cw w ). It is observed that DKT is a model that over-estimates cw . However, the monotonic 

convergence of DKT can‟t be demonstrated. There is also a strong influence on the orientation of the mesh with triangular 

elements of the type DKT and FLX.  The convergence of the moment 
DxM in the middle of the recessed side and of the 

reaction concentrated in the corner ( 2 )xy B
M  in case of simply supported plate are presented in Figure 7 for both types 

of meshes and for DKT and FLX, (Calculations of efforts have been made directly to the nodes peaks followed by an 

average if the node is shared by two elements). There is a fairly rapid convergence, an influence of models and an orientation 

of the mesh. 

 

 

 

 

 

 

 

 

 

 

 

 Meshes considered: N=1, 2, 4,8 

 

Case N = 2 

 

 

 

 

 

 

 

 

     

         

 

 Kirchhoff solution for a concentrated load P: 

 3 2/12(1 ); 0.3D Eh      

 Recess : 
3 25.6 10 /cw PL D    and    0.1257

DxM P  

B 

D 

A 

y 

x C 

L 

L 

 Symmetry conditions: 

0x   on CA ; on CD 0y   

 Boundary conditions: 

- Recess : 0x yw      on ABD 

- Support simple: 0xw    on AB, 

0yw    on BD 

 

C 

A B 

D C 

A B 

D 

mesh A                                                        mesh B 
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- Simple Support:      
3 211.6 10 /cw PL D   and  2 0.1219xy B

R M P   

 

Figure 3-square plate under concentrated load. Data 

 

 

 
Figure 4-homogeneous square plate with concentrated load. Arrow in the center in terms of L / h (mesh A) 
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Figure 5-homogeneous square plate with concentrated load. Arrow in the center in terms of L / h(mesh B) 

 
 

Where Wk the numerical value calculated for the different divisions (N = 1, 2, 4.8) 
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Figure 5-square plates with concentrated load at center built and simply supported. Error for DKT and FLX 

 



Multicellular Multilayer Plate Model: Numerical Approach And Phenomenon… 

56 

 

 
Figure 6-square plates with concentrated load at center built and simply supported. Error on a moment and a reaction in 

the corner for DKT and FLX 

 

IV. CONCLUSION 
The flexibility method developed with a linear interpolation (interpolation functions of the first order) and of way 

independently of the transverse displacements and rotations, solves the problem related to the phenomenon by 

shear locking. In the case of multicellular multilayer finite element, we observe that the method of flexibility, 

which is a model monotone convergence, converges quickly enough for a plate structure. In this paper we have 

presented the results for the analysis of a square plate in bending under load concentrated at the center, simply 

supported on the contour or clamped  while highlighting the influence of the mesh on different slenderness L / h 

(Figures 4 and 5: arrow report /c kw w ). We also presented results on an analysis of a square plate subjected to a 

uniform load, clamped or simply supported on the contour   (Figure 2). The percentage error appeared in Figures 4, 

5, 6 and 7 and that can be translated by the phenomenon of blocking is reduced (becomes negligible) by increasing 

the number of elements this allows us to confirm the reliability of the method on solving the problem of shear 

locking. In the following work (in a future article) we present the results at predictive calculation of the 

performance of bearing subject to the sails seismic behavior by numerical simulation coupled with a damage 

model by comparison with experimental results and by adopting a damage model for   multicellular multilayer  

finite element . 
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