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Abstract: ∅  Klein Gordon Equation has been solved numerically by using two methods: finite difference 

method (FDM) and Adomain decomposition  method (ADM)  and we discover that the ADM is  much more 

accurate than FDM  in this kind of models as shown in the example(1,2).  
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I. INTRODUCTION 
 A finite difference method proceeds by replacing the derivatives in the differential equations by finite 

difference approximations. We assume the function whose derivatives are to be approximated by using Taylor’s 

expansion. This gives a large algebraic system of equations to be solved in place of the differential equation, 

something that is easily solved on a computer [4]. 

 The main advantage of the method is that it can provide analytical or an approximated solution to a 

rather wide class of nonlinear (and stochastic) equations without linearization, perturbation, closure 

approximation, or discretization methods. Unlike the common methods which are only applicable to systems 

with weak nonlinearity and small perturbation and may change the physics of the problem due to simplification, 

ADM gives the approximated solution of the problem without any simplification. Another important advantage 

is that the method is capable of greatly reducing the size of computation work while still maintaining high 

accuracy of the numerical solution [1,2]. 

 

I.1. MATHEMATICAL MODEL: 

 The Klein-Gordon equation, 
   

                                                                            (1)  

was named  after  the physicists Oskar Klein and Walter Gordon, who in 1926 proposed that it describes 

relativistic electrons. Some other authors make the similar claims in the same year.  The equation was first 

considered as a quantum wave equation by Schrödinger in his search for an equation describing de Broglie 

waves. The equation is found in his notebooks from late 1925, before he made the discovery of the equation that 

now bears his name. He rejected it because he couldn’t make it fit data (the equation doesn’t take in account the 

spin of the electron), the way he found his equation was by making simplifications in the Klein Gordon 

equation. In 1927, soon after the Schrödinger equation was introduced, Vladimir Fock wrote an article about its 

generalization for the case of magnetic fields, where forces were dependent on velocity, and independently 

derived this equation. Both Klein and Fock used Kaluza and Klein's method [6].  

 When            , then equation (1) becomes sine-Gordon equation, which is found by Zabusky 

and kruskal in 1965. 

Fiore et al. (2005) gave arguments for the existence of exact travelling wave solutions of a perturbed sine 

Gordon equation on the real line or on the circle and classified them [7 ]. 

 When            then equation (1) is called ∅ –nonlinear klein Gordon equation  (∅  

equation)[8] 
   

         

                           (2) 

or  [33]  
   

    
   

                                    (3) 

 With initial and boundary conditions [10] 

            and  
       

  
     ,     ,          

                 
Equation (3) arises in quantum field theory with m denoting mass and ε is 

coupling constant [11]. 

 The    equation has become an important subject because of its numerous applications in condensed 

matter physics. It describes, for example, structural phase transitions in ferroelectric and ferromagnetic 

materials, topological excitations in quasi one dimensional system like biological macromolecules and hydrogen 
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chains, or polymers, etc. Its simplest localized solutions  so-called ”kinks” which are related to the motion of the 

aforementioned topological excitations, e.g., domain walls in second order phase transitions, or polymerization 

mismatches. A more realistic modeling of physical situation in condensed matter physics often requires the 

inclusion of perturbations of different types like thermal noise and time or spatial dependent potential 

fluctuations[ 12 ]. 

 

II. MATERIALS AND METHODS 
II.1 Finite Difference Method 

   Our aim is to approximate solutions to differential equations (i.e., to find a function or some discrete 

approximation to this function) which satisfies a given relationship between various of its derivatives on some 

given region of space and/or time, along with some boundary conditions along the edges of this domain. Now, 

the formulation of this technique gives: 

      
           

 
                  

       
 

                                       

Let the coordinate       of the grid points be  

          
Where p, q are integers. 

Denote the values of u at these mesh points by  

              

     We start by partitioning the rectangle                        into a grid consisting of     by 

    rectangle with sides       and    , as shown in Figure (1) [4]: 

 
We shall use a difference-equation method to calculate approximation   

                                     

Now, equation (3) be as follows: 

 
                   

   
                   

              
   

                      
  

  
                                        

  

setting    
  

   

                                                             
  

                                                              
  

                                            
                 (4) 

 Equation (4) represents the explicit difference approximation for ∅  equation, which is used to find the 

row        across the grid where the approximation in both rows    ,        are known. The four known 

values on the right hand side                            and        are used to create the approximation         . 

In order to use formula (4) to compute the third row, the first two starting rows of values corresponding to      

and     must be supplied. The boundary function               ,                is used to help 
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produce the first row. Since the second row cannot be determined in a usually way, we may use the Taylor’s 

formula        at      to compute it.  

          
 

 
                      

  

 
      

  

 
     

      (5) 

 

II.1 Adomain Decomposition Method 

 We will present a review of the standard Adomin decomposition method [1,2,3]. To achieve our goal 

we consider the general form of differential equation: 

            )                

 Where    is the highest order derivative which is assumed to be easily invertible      is the remainder of 

the linear operator,     represents the nonlinear terms, and g is the source term. 

The Adomin’s technique consists of approximating the solution an infinite series:  

          
 
                        

And decomposing the nonlinear operator N as  

        
 
                   

Where     is Adomian’s polynomial of                   

   
 

  

  

   
         

 
                           

and we consider the nonlinear homogenous Klein-Gordon ∅ equation: 

                              
Applying the decomposition method (see [1], [2], [11])  

                                

Where        
  

       and       
  

    

Assuming the inverse of operator      exist, it can be taken as  

   
        

 

 

 

 
     . 

Therefore, applying on both sides with    
   yields  

                          
             

        
                    

By using initial condition we get  

                
        

             
        

                 
So,  we get: 

        
             

        
         

         
     

        
     

 
                   

Then we have: 

        , 

and    

        
              

         
                    

Where     . 

For        

   
 

  

  

   
         

 
                 

  

     
                   

Then we get , 

      
              

         
    

      
              

         
    

     

                 
  

  

 
         

  

 
    

  

 
    

   

 
, 

Let                     
   

Then       
  

 
  

For       

   
 

  

  

   
         

 
        =

 

  
               =

 

  
          

                
       =3  

                   

we get: 

      
              

         
   3  

      
              

          
    

     

        
  

 
    

  

 
     

   
  

 
                 

    
  

 
 

Let, D2=               
     

Then     D2
  

 
 

For       
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=
 

 
               

                                             

=   
         

                 

We get: 

      
              

         
      

         
      

              
         

      
         

      
 

 

        
  

 
    

  

 
      

         
  

  

 
                     

         
    

     
  

 
, 

and so on for          

 

III. APPLICATION (NUMERICAL EXAMPLES) 
We solve the following examples numerically to illustrate  the efficiency of the presented methods, suppose we 

have the system 

 

Example 1: [6] 
   

      
   

                ,         

With the initial conditions 

                                                 

We take                          . 

Where                                 
 

 
  and    

  

       
 

      
          Fig. (2) ADM solution to  0<t<0.01   Fig. (3) EFDM solution to  0<t<0.01 and -1<x<1  

      and -1<x<1 with dx=0.105263157894737                             with dx=0.105263157894737                                               

 

 

 

 

 

 

 

 

 

Fig.(4)Exact solution to  0<t<0.01 and -1<x<1 with dx=0.105263157894737 

 

Table (1) comparison between ADM, EFDM and Exact solutions at t=2 with dx=0.020408163265306 

EXACT ADM EFDM 

-0.414411214133078 -0.414411214101644 -0.414411214133078 

-0.364670241057009 -0.364670241031911 -0.364669012962060 

-0.317087953610942 -0.317087953590899 -0.317086928637545 

-0.271306324156148 -0.271306324140212 -0.271305477633181 

-0.22701112796834 -0.227011127955811 -0.227010440389676 

-0.183922496540239 -0.183922496530586 -0.183921952741587 

-0.141787250668732 -0.141787250661578 -0.141786839088029 

-0.100372541039790 -0.100372541034864 -0.100372253179315 

-0.059460438539449 -0.059460438536567 -0.059460268585494 

-0.018843195109709 -0.018843195108769 -0.018843139679920 
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Example 2: [see (6)] 
   

    
   

                          ,         

With the initial conditions 

                
   

 
                         

The boundary conditions are given by 

                                 , where L=1 and A=1.5    

  

                                           
Fig. (5) ) ADM solution to 0<t<0.0001                                         Fig. (6) EFDM solution to 0<t<0.0001 

and 0<x<1 with dx=0.020408163265306                                       and 0<x<1 with dx=0.020408163265306     

 

Table (2) comparison between ADM, EFDM solution at t=2 with dx=0.020408163265306 

ADM EFDM 

2.987685020734869 2.987685020550971 

2.950942294558544 2.950942294379764 

2.806978056185084 2.806978056025879 

2.577524025146591 2.577524025017099 

2.435234702788101 2.435234702676172 

2.107175014683591 2.107175014609870 

1.739399842550069 1.739399842515833 

1.548077366357483 1.548077366342586 

1.355965461138478 1.355965461142287 

1.166218599065529 1.166218599087200 

0.981952418368039 0.981952418406554 

0.806192564638747 0.806192564692939 

0.641825009816746 0.641825009885315 

0.491548664608025 0.491548664689548 

0.357831062446298 0.357831062539230 

0.242867842662239 0.242867842764914 

0.148546698146371 0.148546698257009 

0.076416379483997 0.076416379600713 

0.021681051104011 0.021681051103044 0.021680993104744 

0.062312318757989 0.062312318755080 0.062312146183729 

0.103252748218675 0.103252748213720 0.103252457634093 

0.144710656400331 0.144710656393147 0.144710241934291 

0.186904856153030 0.186904856143345 0.186904309243295 

0.230069434484844 0.230069434472276 0.230068743494559 

0.274459218894519 0.274459218878543 0.274458368570347 

0.320356215567061 0.320356215546973 0.320355186294337 

0.368077383902961 0.368077383877811 0.368076150876117 

0.417984229397421 0.417984229365926 0.417984229397421 
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0.027661264513402 0.027661264634223 

0.003081910874495 0.003081910997386 

0.003081910874495 0.003081910997386 

0.027661264513402 0.027661264634223 

0.076416379483997 0.076416379600713 

0.148546698146371 0.148546698257009 

0.242867842662239 0.242867842764914 

0.357831062446298 0.357831062539229 

0.491548664608024 0.491548664689547 

0.641825009816745 0.641825009885314 

0.806192564638747 0.806192564692939 

0.981952418368038 0.981952418406553 

1.166218599065527 1.166218599087198 

1.355965461138476 1.355965461142286 

1.548077366357482 1.548077366342585 

1.739399842550069 1.739399842515833 

1.926791379946547 1.926791379892598 

2.107175014683589 2.107175014609868 

 

IV. CONCLUSION 
We saw that Adomain decomposition method is much more accurate than finite difference  method for solving  

   Klein Gordon Equation and this kind of models as shown in figures (2-4) and table (1) for example (1) and 

figures (5-6) and table (2).  
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