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Abstract: The notion of sliding window is to identify the vigorous itemset in which the vigorous itemset refers 

to the newest itemset that comes in recently. The simple sliding window permits the newest itemset to come 

inside and also allows the oldest itemset to move outside. The sliced sliding window splits the sliding window 

into slices. Each slice in the sliding window permits the newest itemset to come inside and also allows the oldest 

itemset to move outside. The simple sliding window uses the Brute Force Approach and the Event Processing 

Approach for determining Top-K influencing itemset on data streams. The sliced sliding window uses the 

Improved Brute Force Approach and the Improved Event Processing Approach for determining Top-K 

influencing itemset on data streams. The sliding window identifies Top-K influencing itemset on data streams 

based on preferences and multi-dimensional analysis. The paper compares the CPU time, accuracy as well as 

efficiency of both the sliding windows. Experimental evaluation using the real and synthetic dataset shows that 

the sliced sliding window is accurate. Also, the sliced sliding window reduces the CPU time. 

Keywords: Event processing algorithm, Preference based query, Sliced sliding window, Simple sliding 

window, Top-K influencing itemset. 

 

I. INTRODUCTION  
The Top-K influencing query identifies the Top-k itemset which influences other itemset using some 

preferences. The query maintains a user defined ranking function, which allocates a value to each itemset and 

has scaling invariance property which means that if scaling applies to dimension values then, the result will be 

the same. The sliced sliding window supports the count based sliding window. In count based sliding window 

[7], the number of vigorous itemset remains constant. The moving out time of some itemset will be equal to the 

incoming time of the same amount of other itemset. This method serves the purpose of book-keeping, which 

deletes a moving out itemset and introduces a new itemset. Consequently, it simply calculates and updates the 

scores of the Top-K influencing itemset.  

The work carries a thorough experimental estimation based on real datasets and synthetic datasets. This 

provides evidence regarding the CPU time, accuracy and efficiency of the Top-K influencing itemset. 

Remaining of the paper organizes as follows. Section 2 illustrates the work linked with the problem. Section 3 

compares the simple sliding window and the sliced sliding window. Both the sliding windows identify the Top-

K influencing itemset based on the Brute Force Approach and the Event Processing Approach. Section 4 

presents the experimental estimation of based on some datasets. Section 5 concludes the work which carries out 

throughout the paper. 

 

II. RELATED WORK 
Preferences [6] take place in Game Theory, Computational Geometry and others disciplines. The Top-

K Scrutinizing algorithm [7] finds the Top-K dominating itemset based on the Bucket In-Out method. The batch 

counting [8] computes the scores of skyline itemset in batch instead of iteratively applying separate range 

queries. This involves a light weight technique [8] to obtain the upper bound score of non-leaf entries at low 

cost and the lazy counting technique to delay the counting of itemset for the purpose of forming better groups 

for batch counting. To be efficient, the tree traverses with a cautiously designed priority order aiming at 

minimizing the I/O cost. According to [6], the moving outside time of an itemset will be equal to the sum of the 

coming inside time of an itemset and the number of vigorous itemset. The entering and running out time 

instances characterize the sequence of itemset formed by the data.  

Reverse Top-K queries [4] are necessary for the manufacturers to access the potential market and 

impact of their products based on competition. A grid-based indexing scheme [5] facilitates an efficient search 

and update operations, evading costly re-organization costs. The method uses an adaptive grid which separates 

equally the tuples in each dimension. The schema formulates and tackles the problem of Probabilistic Top-K 

Dominating (PTD) query [3] in the context of uncertain databases. The Sliding Window Combinatorial 
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Approximation (SWCA) [2] establishes frequent itemset over sliding windows in data streams. The Min Top-K 

algorithm [1] maintains a Minimal Top-K candidate set (MTK) which determines the Top-K value and thus 

eliminates the need for re-calculation.  

 

III. COMPARISON OF SIMPLE SLIDING WINDOW AND SLICED SLIDING WINDOW  

The comparison of the simple sliding window and the sliced sliding window for identifying the Top-K 

influencing itemset based on the Brute Force Approach and the Event Processing Approach takes place as 

follows. 

 

1. Simple Sliding Window  

The simple sliding window adopts the count based sliding window. The simple sliding window 

identifies the Top-K influencing itemset based on the Brute Force Approach and the Event Processing 

Approach. 

 

1.1 Brute Force Approach 

The Brute Force Approach takes place in a count based sliding window. In a count based sliding 

window, if a newest itemset comes inside the sliding window the oldest itemset will move outside the sliding 

window and the time progresses. Hence, the moving out time of the itemset will be equal to the sum of the 

moving out time of the itemset and the number of vigorous itemset. Consequently, the checks for finding the 

influencing itemset will be large. The simple sliding window forces the oldest itemset to move outside the 

sliding window whenever the newest itemset comes inside. Therefore, the approach is termed as the Brute Force 

Approach. 

 

1.2 Event Processing Approach 

The Event Processing Approach includes an event processing time, event generation time and score of 

an itemset at the event generation time. Each update applies a chain of operation. Initially, the approach updates 

the book-keeping structure and deletes the itemset which moves outside and enters the itemset which comes 

inside. Furthermore, the approach updates the scores of the Top-K influencing itemset. After that, the approach 

processes the entering itemset to determine whether they should be a part of Top-K. The approach then tries to 

locate an itemset such that, it influences the itemset which comes inside and it is not a part of Top-K. If such an 

itemset does not exist or the upper bound of the score is larger than or equal to the top score, then the approach 

calculates the itemset which comes inside from scratch. If score of the itemset which comes inside is greater 

than the top score, then it inserts the itemset which comes inside in the Top-K. Otherwise, the approach 

produces an event for the itemset which comes inside by using three parameters such as the id j of the itemset, 

its score and now, which is the current time occurrence. First, it calculates the event processing time.  

Subsequently, it ensures whether time is greater than or equal to now. If so, it inserts the event into the 

priority queue. Examine that, the event processing time is less than now as if the parameter score is larger than 

top score. Thus, it always generates an event, since either the upper bound or the exact score is less than the top 

score. At last, it processes all the events with the event processing time equal to now. Then, the approach tries to 

re-calculate the event processing time value by using the upper bound of the number of itemset influenced by 

the i
th

 itemset for an event. If the event again inserts into the event priority queue, then consider the subsequent 

event. If not, if the upper bound assessment is poor, the calculated event time is likely to be less than now. In 

such a case, the approach proceeds with the exact score calculation of the number of itemset influenced by the i
th

 

itemset and either inserts the i
th 

itemset in the Top-K or re-calculates the event time based on the exact score of 

the i
th 

itemset. Subsequently, it controls the moving out Top-K influencing itemset. If a Top-K itemset expires in 

now and no updates in top score then, there is no need to try to calculate event times. In this case, it sets the top 

score to -1 to forcibly insert other itemset in Top-K. Afterward, it calculates the score of the itemset of the 

initially examined event and inserts the itemset in Top-K. Eventually, it tries to re-calculate the event time of the 

remaining events. 

 

2. Sliced Sliding Window  

The sliced sliding window splits the sliding window into slices. The sliced sliding window also adopts 

the count based sliding window. The sliding window gets split into five slices which are equal in size. The sliced 

sliding window identifies the Top-K influencing itemset based on the following Improved Brute Force 

Approach and Improved Event Processing Approach. 

 

2.1 Improved Brute Force Approach 

The Improved Brute Force Approach also takes place in a count based sliding window. Each slice of 

the sliding window carries out the Brute Force Approach and is known as the Improved Brute Force Approach. 
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In each slice, if a newest itemset comes inside the oldest itemset will move outside and the time progresses. 

Hence, the moving out time of the itemset will be equal to the sum of the moving out time of the itemset and the 

number of vigorous itemset. Consequently, the checks for finding the influencing itemset will be large for each 

slice. Therefore, the sliced sliding window forces the oldest itemset to move outside each slice when the newest 

itemset comes inside.  

 

2.2 Improved Event Processing Approach 

The Improved Event Processing Approach also includes an event processing time, event generation 

time and score of an itemset at the event generation time. Each update applies a chain of operation. Initially, the 

approach updates the book-keeping structure and deletes the itemset which moves outside and enters the itemset 

which comes inside. Also, the approach updates the scores of the Top-K influencing itemset. After that, the 

approach processes the entering itemset to determine whether they should be a part of Top-K. Subsequently, the 

approach calls the Slice In-Out which tracks the in-out operation of each slice when an itemset comes into the 

window. Each time when a slice in-out operation occurs, the approach deletes the earliest transaction of the 

corresponding slice which contains the summary of transactions from the current window at each sliding. 

Hence, it is not essential to save the whole transactions within the current window in memory all along to 

support sliding window.  

The sliding window is divided into five slices of equal size and each slice corresponds to a set of 

transactions. This is to reduce the overhead of memory throughout the storage of transactions. If there are more 

slices, then the overhead of memory arises during storage of the transactions. The approach then checks in 

which slice the itemset comes inside and the oldest itemset moves outside. Afterward the approach tries to 

locate an itemset in the slice such that, it influences the itemset which comes inside and it is not a part of Top-K. 

If such an itemset does not exist or the upper bound of the score is larger than or equal to the top score, then the 

approach calculates the itemset which comes inside from scratch. If score of the itemset which comes inside is 

greater than the top score, then it inserts the itemset which comes inside in the Top-K. Otherwise, the approach 

produces an event for the itemset which comes inside by using three parameters such as the id j of the itemset, 

its score and now, which is the current time occurrence.  

First, it calculates the event processing time. Subsequently, it ensures whether time is greater than or 

equal to now. If so, it inserts the event into the priority queue. Examine that, the event processing time is less 

than now as if the parameter score is larger than top score. Thus, it always generates an event, since either the 

upper bound or the exact score is less than the top score. At last, it processes all the events with the event 

processing time equal to now. Then the approach tries to re-calculate the event processing time value by using 

the upper bound of the number of itemset influenced by the i
th 

itemset for an event. If the event again inserts into 

the event priority queue, then consider the subsequent event. If not, if the upper bound assessment is poor, it is 

possible the calculated event time to be less than now. In such a case, the approach proceeds with the exact score 

calculation of the number of itemset influenced by the i
th 

itemset and either inserts the i
th 

itemset in the Top-K or 

re-calculates the event time based on the exact score of the i
th 

itemset. Subsequently, it controls the moving out 

Top-K influencing itemset. If a Top-K itemset expires in now and no updates in top score then, there is no need 

to try to calculate event times. In this case, it sets the top score to -1 to forcibly insert other itemset in Top-K. 

Afterward, it calculates the score of the itemset of the initially examined event and inserts the itemset in Top-K. 

Eventually, it tries to re-calculate the event time of the remaining events. 

IV. EXPERIMENTAL EVALUATION 
All the approaches implement using C Sharp and conduct experiments on a Pentium at 3.0 GHz with 1 

GB of Random Access Memory (RAM). This uses the real datasets and the synthetic datasets, named as the 

School-Buses datasets (http://www.chorochronos.org). The dataset undergoes a multidimensional analysis. The 

analysis of School-Buses dataset consists of 145 trajectories of 2 school buses collecting (and delivering) 

students around Athens metropolitan area in Greece for 108 different days. The structure of each record is as 

follows: {object id, trajectory id, date, time, latitude, longitude, x, y}. 

Table.1: Performance Analysis of Brute Force Approach versus Improved Brute Force Approach. 

 

Number of Iterations 

CPU Time in Milliseconds 

Brute Force Approach Improved Brute Force Approach 

1 677 498 

2 568 560 

3 536 477 

4 568 505 
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Table.1 shows the performance analysis of the Brute Force Approach versus Improved Brute Force 

Approach. The approaches have the following CPU time during the first iteration. The Brute Force Approach 

takes 677 milliseconds while the Improved Brute Force Approach takes 498 milliseconds. In the second 

iteration, the Brute Force Approach takes 568 milliseconds whereas; the Improved Brute Force Approach takes 

560 milliseconds. The third iteration has the CPU time as follows. The Brute Force Approach takes 536 

milliseconds; while the Improved Brute Force Approach takes 477 milliseconds. During the fourth iteration, the 

Brute Force Approach takes 568 milliseconds; whereas; the Improved Brute Force Approach takes 505 

milliseconds. The iteration prolongs till it retrieves the Top-K influencing itemset. 

 

 
Fig.1: Iterations versus CPU time  

(Brute Force Approach versus Improved Brute Force Approach) 

 

 Fig.1 plots the CPU time obtained from the Table.1 for each of the iterations in a graph. The graph 

takes the number of iterations in x-axis and the CPU time in y-axis. The solid diamond shape represents the 

CPU time of Brute Force Approach. The solid square shape represents the CPU time of Improved Brute Force 

Approach. From the Table.1 and Fig.1, it is clear that the Improved Brute Force Approach reduces the CPU 

time. Since, the Improved Brute Force Approach involves sliced sliding window it also reduces the memory 

overhead and the accuracy will be high. Accordingly, the sliced sliding window has the higher efficiency. 

 

Table.2: Performance Analysis Event Processing Approach versus Improved Event Processing Approach. 

 

Number of Iterations 

CPU Time in Milliseconds 

Event Processing Approach Improved Event Processing Approach 

1 313 188 

2 391 203 

3 332 276 

4 303 219 

 

Table.2 shows the performance analysis of the Event Processing Approach versus Improved Event 

Processing Approach. The approaches have the following CPU time during the first iteration. The Event 

Processing Approach takes 313 milliseconds while the Improved Event Processing Approach takes 188 

milliseconds. In the second iteration, the Event Processing Approach takes 391 milliseconds whereas; the 

Improved Event Processing Approach takes 203 milliseconds. The third iteration has the CPU time as follows. 

The Event Processing Approach takes 332 milliseconds; while the Improved Event Processing Approach takes 

276 milliseconds. During the fourth iteration, the Event Processing Approach takes 303 milliseconds; whereas; 

the Improved Event Processing Approach takes 219 milliseconds. The iteration continues till it retrieves the 

Top-K influencing itemset.  

 
Fig.2: Iterations versus CPU time  

(Event Processing Approach versus Improved Event Processing Approach) 
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 Fig.2 plots the CPU time obtained from the Table.2 for each of the iterations in a graph. The graph 

takes the number of iterations in x-axis and the CPU time in y-axis. The solid diamond shape represents the 

CPU time of Event Processing Approach. The solid square shape represents the CPU time of Improved Event 

Processing Approach. From the Table.2 and Fig.2, it is clear that the Improved Event Processing Approach 

reduces the CPU time. Since, the Improved Event Processing Approach involves sliced sliding window it also 

reduces the memory overhead and the accuracy will be high. Thus, the sliced sliding window has the higher 

efficiency. 

 

V. CONCLUSION 
The sliding window identifies the vigorous itemset in which the newest itemset comes inside the 

sliding window recently. The simple sliding window permits the newest itemset to come inside and also allows 

the oldest itemset to move outside. The sliced sliding window splits the sliding window into slices. Each slice in 

the sliding window permits the newest itemset to come inside and also allows the oldest itemset to move 

outside. The simple sliding window uses the Brute Force Approach and the Event Processing Approach for 

determining Top-K influencing itemset on data streams. The sliced sliding window uses the Improved Brute 

Force Approach and the Improved Event Processing Approach for determining Top-K influencing itemset on 

data streams. The paper compares the CPU time, accuracy as well as efficiency of both the sliding window. 

Experimental evaluation using the real and synthetic dataset shows that the sliced sliding window is accurate. 

Also, the sliced sliding window reduces the CPU time. 
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