
International Journal of Engineering Inventions 

e-ISSN: 2278-7461, p-ISSN: 2319-6491  

Volume 3, Issue 1 (August 2013) PP: 31-42 

www.ijeijournal.com                      Page | 31 

Wavelength Conversion of a Laser Beam Using a Continuous-

Wave Optical Parametric Oscillator 
 

Kireet Semwal
1
, S. C. Bhatt

2
 

1 
Department of Physics, G.B. Pant Engineering College, Pauri (Garhwal), Uttarakhand. 

2 
Department of Physics, HNB Garhwal Centrel University, Srinagar (Garhwal), Uttarakhand. 

 

Abstract: The nonlinear optical processes are among the most fascinating effects that can be produced in 

lasers. These processes are almost magical, as they permit light of one colour (wavelength) to be converted into 

the light of a different colour. Nonlinear optics is a study that deals mainly with various new optical effects and 

novel phenomena arising from the interactions of intense coherent optical radiation with matter. Second 

harmonic generation is a nonlinear optical process, which is the most useful and well-developed technique for 

frequency conversion of laser beam. Optical parametric oscillation is one type of second harmonic process. In 

the process of optical parametric oscillation the intense input laser beam at frequency p (pump frequency) is 

passes through a nonlinear material having nonzero value of
)2( , generates the desired frequencies s (signal 

frequency) and the frequency i (idler frequency). The amplification is enhanced by placing the optical 

harmonic (nonlinear) crystal within an optical cavity in which the mirrors are specifically made reflective at 

either one of these two frequencies, or for both. Here we have converted Nd:YAG laser at wavelength 1064 nm 

to 1525 nm, using optical parametric oscillation.  

Keywords: Optical parametric oscillation (OPO), Second harmonic generation, Nonlinear optics, Phase 

matching. 

 

I. Introduction 
Nonlinear optics is a study that deals mainly with various new optical effects and novel phenomena 

arising from the interactions of intense coherent optical radiation with matter. There is a historical reason why 

this new branch of optical physics is termed “nonlinear optics”. Before 1960’s, in the area of conventional 

optics many basic mathematical equations or formulae manifested a linear feature [1]. In the regime of 

conventional optics, the electric polarization vector P is simply assumed to be linearly proportional to the 

electric field strength E of an applied optical wave, i.e. [2][3][4] 

                        EP 0                                                     (1) 

where 0 is the free-space permittivity,  is the susceptibility of a given medium and a plot of P versus 

E is a straight line.  The relation (1) is valid for the field strengths of conventional sources. The quantity 

 is a constant only in the sense of being independent of E; its magnitude is a function of the frequency. With 

sufficiently intense laser radiation this relation does not hold good and has to be generalized to equation (2), 

which can be written in the vector form, as  by a power series  

                  P = 0[
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where
)1(

ij  is a second – rank (linear) tensor (9 components xx, xy, xz, yx,……..), where 
)2(

ijk  is a third -rank 

(nonlinear) tensor (27 components, xxx, xxy, xxz, xyx,…….), and 
)3(

ijkl
 
is a forth-rank (nonlinear) tensor (81 

components, xxxx,xxxy, xxxz, xxyx,……). The values of the tensor coefficients are functions of frequency and 

temperature. The subscripts m, n, and o etc. denotes different frequency components, and i, j, k and l are 

Cartesian indices that run from 1 to 3 [1]. The polarization is represented by the sum of individual perturbed 

polarization terms as  

                                  P = P
 (1) 

+ P
 (2) 

+P
 (3) 

+……………+P
 (n) 

+….                                                           (3) 

the general form of the Fourier component of the nth-order polarization can be obtained as  
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Here a summation relation is fulfilled: 
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Here ),.....,( 1

)(

n

n  is called the nth-order susceptibility of the medium and it is a (n+1) th-order tensor. For 

small field strength the polarization is proportional to the electric field E and is accounted for by the 

polarizatbility tensor
)1(

ij . All of the optics discussed so far has been linear optics encompassed in the term

)()()1(

0 mjmij E  . The term )()(),()2(

nkmjnmijk EE   is responsible for all of the two-wave 

effects. This includes second harmonic generation (two fields at  to make one at 2) and parametric oscillation 

(one field at 1 and other field at 2 to create fields at 1 - 2 and 1 + 2). The nonlinear polarization tensor 
)2(  vanishes in the crystals that have a center of symmetry (i.e. crystal symmetry). In these crystals second 

harmonic generation is not possible. Thus the second-order polarization and the corresponding monochromatic 

components of the optical field:  

                      )()(),()( 2121
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)2(  EEP                                        (6) 

where
)2( denotes the second-order susceptibility that is a third-order tensor. For instance, in the second-order 

optical sum-frequency process 321   created by )( 1E and )( 2E , three involved nonlinear 

polarization component can be written as  
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The susceptibility tensors for a given medium must remain unchanged upon the symmetric operation allowed 

for this medium. According Guang & Song [1], in general the following permutation-symmetry relations of 

tensor elements for second and third order susceptibilities hold 
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Desmond [5] simplified
)2(

ijk , and replaced by a nonlinear optical coefficient dil (Coulomb/Volt
2
), according to 

the following relationship: 
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And according to Kuhn [2]
)2(

2

1
ijkijd  , here,0, is the permittivity of free space, some authors excludes 0 

from the d coefficient, in this case d [As/V
2
] = 8.855  10

-12
d [m/v]. The conversion from the cgs system to 

MKS units becomes d [As/V
2
] = 3.68  10

-15
d [esu].  According to Desmond [5], Boyd and Kleinman [6], the 

tensor dijk can be defined in terms of the field and polarization amplitudes as 
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                                                 (11) 

and it follows that dijk = dikj, and using the matrix notation, for jk: xx =1; yy = 2; zz = 3; yz = zy = 4; zx = xz 

= 5; xy = yx = 6, and therefore: 
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The 3 6 dil matrix operates on a column vector (EE)l given by                                                                           

                        
        

         
         

 

                                      

                                (13) 

Under some conditions it turns out that dijk = dkij = djik as well; i.e, all subscripts can be permuted. This 

is known as Kleinman’s symmetry conjecture [40], and was originally deduced by the inspection of actual tensor 

element values. It reduces the 18 independent values for the elements in the dijk matrix (6  3) to just 10 (for 

example, d12 = dxyy = dyyx = d26, etc).Finally, further reduction in the complexity of the tensor results from the 

actual symmetry of the crystal to which it refers. For example, for KDP ( m24 ),dijk  is given by 
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Since d14 = dxyz and d36 = dzxy we would expect them to be equal on the basis of Kleinman’s symmetry 

conjecture, so that in all such m24 crystals, there will be only one independent value.  Crystals of the KTP 

family belong to point group 2mm, so the form of their nonlinear tensor in a coordinate system where x, y, and z, 

refer to principal axes with refractive-index ordering 
zyx nnn   is 
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In most practical situations the tensor equations containing dijk can be simplified to non-tensor form in which dijk 

is replaced by deff, is the effective nonlinear coefficient for the interaction dependent on crystal symmetry and 

propagation direction in the medium. 

 

II. Second Order Nonlinear Processes 
The simplest second-order process is that of second-harmonic generation (SHG). In this process, an 

intense laser beam of angular frequency 1 (= ) is passed through a crystal having nonzero value of 
)2( , such 

that the beam emerging from the crystal contains the angular frequencies 1of the input beam and also 2 = 21, 

twice the frequency of the input beam. This can be shown to occur by considering the second nonlinear 

polarization term
)2(P . Based on the nonlinear polarization theory, the source of second-harmonic field is the 

following nonlinear polarization component [1]: 

                                        
)()(),()2( )2(

0

)2(  EEP                                                  (14) 

Here, )(E is the incident fundamental optical field, and ),()2(  is the second-order 

susceptibility tensor of a given nonlinear medium for SHG [7]. 

In the second-harmonic generation, considered the combination (addition) of two photons of the same frequency 

to produce a single photon of twice the frequency. It can now to generalize this process to allow for the case in 

which the two photons have different frequencies 1 and 2. In a similar fashion to our treatment of two photons 

with the same frequency, let us write the expression for the field as 
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which includes the complex conjugates of both E1 and E2. We again compute the second-order nonlinear 

polarizability as 
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We have conveniently grouped common terms together. These include DC terms, second harmonic 

terms (involving 21 and 22), and two new terms involving 1 + 2 and 1 - 2. The new term involving 1 + 

2 generates a new frequency that is the sum of the two original frequencies and is thus known as sum frequency 

generation. The term involving the difference between the two frequencies, 1 - 2 , is referred to as difference 
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frequency generation. In the sum frequency generation, when a new photon 3 =1 + 2 is created, the 

frequencies 1 and 2 are destroyed. In the difference frequency generation the photon of higher frequency 1 is 

destroyed while both 2 and 3 are created. Since 2is already present as one of the input beams, this suggests 

that 2 is amplified in the process-that is, photons are added to the beam at the frequency2.  

Optical parametric oscillation is one type of second harmonic process. In the process of optical 

parametric oscillation the intense input laser beam at frequency p (pump frequency) is passes through a 

nonlinear material having nonzero value of
)2( , generates the desired frequencies s (signal frequency) and the 

frequency i (idler frequency). The amplification is enhanced by placing the optical harmonic (nonlinear) crystal 

within an optical cavity in which the mirrors are specifically made reflective at either one of these two 

frequencies, or for both [8][9]. In the process of difference frequency mixing, the frequency 2 is amplified 

while the frequency 3 is being generated. In the process of optical parametric oscillation (OPO) the intense 

input laser beam at frequency p is known as the pump frequency, when passes through a nonlinear material, 

generates the desired frequencies s (signal frequency) and the frequency i (idler frequency. The amplification 

can be enhanced by placing the optical harmonic (nonlinear) crystal within an optical cavity in which the 

mirrors are specifically made reflective at either one of these two frequencies, or for both. Thus the intensity at 

those frequencies will build up within the cavity, by Fabry-Perot interferometer. Such an amplification process 

is known as an optical parametric oscillator (OPO). Of course, either s or i can be tunable laser to generate 

amplified tunable output. This process is used most often in the infrared frequency range, where tunable lasers 

are not as readily available as in the visible portion of the frequency spectrum. [10].  

The output of an optical parametric oscillator (OPO) is similar to that of a laser. It is highly 

monochromatic and exhibits laser speckle. The spectrum is formed of one or several longitudinal modes. The 

transverse mode spectrum is often TEM00 and propagates with Gaussian-like properties [1]. The energy 

conservation requires that  

                                                           isp                                                                               (17) 

Here p, s, and i are the frequencies of the pump, signal and idler wave. It is clear that the 

frequencies of the two emitted photons cannot be uniquely determined on the basis of the energy conservation 

condition,(17) alone. For a given p, there can be a continuous range of choices of s and i. This, in fact, is the 

origin of the tunability of the optical parametric oscillator. The specific pair of frequencies that will be emitted is 

dictated by the momentum conservation condition, or phase matching condition: kp = ks + ki, that must also be 

satisfied in order to ensure that the signal waves generated in different parts of the nonlinear crystal are in phase 

and add coherently [11]. For collinearly propagating waves this may be written [12][13][14]][15] [16] [6] 
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Here np, ns and ni are the refractive indices of the pump, signal and idler wave and p, s and i there 

corresponding wavelengths respectively. The pump signal is usually provided by a laser and, therefore p is 

fixed. However, if the refractive indices are varied, the signal and idler frequencies will tune. Under an 

appropriate arrangement for the angle (or temperature) of a given nonlinear crystal, the above two requirements 

(Eq.(17) &(18)) can be satisfied and oscillations at two different frequencies s, and i can be achieved. Based 

on this working condition, if we slightly change the angle or temperature of the crystal, the refractive index 

relation between these three waves will be changed; therefore the oscillating frequencies will be smoothly tuned 

to different values [4][17]. The requirements of nonlinear crystals for optical parametric oscillation are 

essentially the same as that for SHG. In other words, the nonlinear materials must be non-centrosymmetrical 

crystals, highly transparent for pump, signal, and idler beams, able to fulfill the phase matching by using angle-

tuning or temperature-tuning.  

 
Figure-1 Singly-Resonant Optical Parametric Oscillator 
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A possible simple implementation of the optical parametric oscillator is shown schematically in Figure-

1. It consists of a suitably oriented nonlinear optical crystal in a Fabry-Perot cavity. The cavity mirrors are 

coated to transmit the pump wave and reflect either the signal wave only or both the signal and idler waves. In 

the former case, the oscillator is known as the singly resonant oscillator, and, in the latter case, it is known as the 

doubly resonant oscillator. After passing through the output-coupling mirror the transmitted pump beam is 

blocked by a filter. The further separation between the signal beam and idler beam can be done by using 

appropriate spectral filters or optical dispersive elements. Various optical cavity designs, including stable, 

unstable, or metastable cavity configurations, can be employed for OPO purpose. The criteria of selection of 

cavity designs are same as that for laser cavity devices. Since we assume for optical parametric oscillation in a 

second-order nonlinear crystal, the three waves are linearly polarized and propagating along z axis: 
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Accordingly, the nonlinear polarization sources of these waves can be expressed as the following forms: 
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thus the nonlinear coupled-wave equations leads 
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(21) 

where k = kp – ks – ki is the phase mismatch factor. The fundamental coupled equations for parametric 

oscillation are similar to those of second harmonic generations. Following the procedure of Harris [18] and 

Qiang Liu et. al, [19] these equations can be written as  
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                                                    (22)  

where Es is the electric field of the signal, Ei is the electric field  of the idler, Ep is the electric field  of 

the pump, the plane-wave impedance xx n377 in ohms, deff is the nonlinear coefficient of the nonlinear 

tensor, in MKS system unit is As/V
2
. The ratio between the signal and idler powers can be obtained by solving 

these coupled equations (22), as for second harmonic generation. According to Eq.(9) the following relation 

holds: 

                spspiipipsisispe aaaaaaaaa ),(),(),( )2()2()2(                (23) 

Here, e is the effective nonlinear susceptibility value for this process. Assuming the phase-matching condition 

of 0k is satisfied, the initial boundary conditions are  
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and the depletion of Ap(z) in a short propagation distance can be nearly neglected in small-signal approximation, 

then Eq.(21) can be simplified as  

                                                  






















)()0(
2

)(

)()0(
2

)(

*

2

*

2

zAA
n

ik

z

zA

zAA
n

ik

z

zA

spe

i

ii

ipe

s

ss





                                                       (25) 

In order to achieve optical parametric oscillation, the net gain for a round-pass within the cavity is determined 

by 
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where                              )0(0 p

ssis

e A
nn


                                                                 (27) 

and 0 is the linear attenuation coefficient, l is the optical-path length of the crystal. One can see that the 

attenuation length is 2l, while the effective gain length is only l because the backward signal and idler beams 

reflected from the output coupling mirror is R, the threshold condition for optical parametric oscillation is 

determined by  
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The above expression can be written as 
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Finally, substituting the 0 expression of Eq.(27) into Eq.(29) leads to the following threshold condition: 
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Since   )0(0 pp IA  , the above condition implies that for a given nonlinear medium and interaction length 

l, only as the input pump beam intensity is higher than a certain threshold the optical parametric oscillation can 

be achieved. The threshold for oscillation of the singly resonant oscillator is [20][21].  
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and that for the doubly resonant oscillator is  
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where Ith is the threshold intensity; as and ai are the fractional round-trip power losses of the signal and 

idler waves; deff is the effective nonlinearity of the OPO crystal; l is the crystal length; np, ns, and ni are the 

refractive indices of the pump, signal, and idler waves, respectively; 0 is the permittivity of free space, and c is 

the speed of light. Clearly, the threshold for the singly resonant oscillator will be higher than that for the doubly 

resonant oscillator. The trade-off is that singly resonant oscillator tends to be more stable than the doubly 

resonant oscillator, because of the more stringent requirement that two resonant conditions must be satisfied 

simultaneously in the cavity of the doubly resonant oscillator. 

The threshold pump intensity Ith for a singly resonant OPO having a reflection of the pump beam from OPO 

output coupler is given by [22] 

                                               

2

2
2ln

1
ln2

25

)1(

8.1



















R
l

ct

L

lg
I

peffs

th 


                       (33) 



Wavelength Conversion of a Laser Beam Using a Continuous-Wave Optical Parametric Oscillator 

www.ijeijournal.com                      Page | 37 

where                                  
cnnn

d

ispis

eff

0

228




 

                                                                                  

 (34)                                              

is the coupling constant, tp is the pulse width (FHWM) of the pump pulse, and  = 1(at threshold) is the ratio of 

the backward to forward pump amplitude in the OPO cavity, 2L is the round trip loss of the OPO crystal (  

0.01), L is the optical length of OPO cavity, leff is the effective length of the nonlinear crystal, R is the output 

coupler reflectivity, gs is the mode coupling coefficient ( 0.85), np, ns and ni are the refractive indices of pump, 

signal and idler wavelengths (np =1.748, ns = 1.737, ni  = 1.771 [23]), s and i are the wavelengths of signal and 

idler waves  [24] [25] [26] [27].  

 

III. Optics of Uniaxial Crystals 
In uniaxial crystals a special direction exists called the optic axis (z-axis). The plane containing the z-

axis and the wave vector k of the light wave is termed the principal plane. The light beam whose polarization 

(i.e., the direction of the vector E oscillations) is normal to the principal plane is called an ordinary beam or an 

o-beam. The beam polarized in the principal plane is known as the extraordinary beam or e-beam. The 

refractive index of the o-beam does not depend on the propagation direction, whereas for the e-beam it does.  

Thus, the refractive index in anisotropic crystals generally depends both on light polarization and propagation 

direction. The difference between the refractive indices of the ordinary and extraordinary beam is known as 

birefringence n. The value of n is zero along the optic axis z and maximum in the direction normal to this 

axis. The refractive indices of the ordinary and extraordinary beams in the plane normal to the z axis are termed 

the principal values and are denoted by no and ne, respectively. 

 
Figure-2. Polar coordinate system for description of refractive properties of uniaxial crystal 

  

The refractive index of the extraordinary wave is, in general, a function of the polar angle  between 

the z axis and the vector k (Figure-2). It is determined by the equation (index e in this case is written as a 

superscript):[28][29][30][1][3][1] 
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The following equations are evident: 
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If eo nn  , the crystal is negative; if eo nn  , it is positive. The quantity n
e
 does not depend on the azimuthal 

angle  (the angle between the projection of k onto the xy-plane perpendicular to the z-axis and the x-axis 

(Fig.2). The indicatrix of the refractive indices is a sphere with radius no for an ordinary beam and an ellipsoid 

of rotation with semiaxes no and ne for an extraordinary beam (the axis of the ellipsoid of rotation is the z-axis). 
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In the z-axis direction the sphere and ellipsoid are in contact with each other. In a negative crystal the ellipsoid is 

inscribed in the sphere, whereas in a positive crystal the sphere is inscribed in the ellipsoid. When a plane light 

wave propagates in a uniaxial crystal, the direction of propagation of the wave phase (vector k) generally does 

not coincide with that of the wave energy (vector s). The direction of s can be defined as the normal to the 

tangent drawn at the point of interaction of vector k with the n() curve. For an ordinary wave n() dependence 

is a sphere with radius no. Therefore, the normal to the tangent coincides with the wave vector k. For an 

extraordinary wave the normal to the tangent (with the exception of the cases  = 0
0
 and  = 90

0
) does not 

coincide with the wave vector k but is rotated from it by the birefringence angle or walk-off-angle: 

                                              
   ]tannn tanarc 2

eo )/[(
                                            (37)

 

where the upper signs refer to a negative crystal and lower signs to a positive one. Thus, by rotating the crystal 

in the plane of the optic axis and the incident beam (the direction of k vector) it is possible to select a range of 

value of ne from which the condition of phase matching can be satisfied 

When the phase matching is achieved by choosing a direction of propagation which is not at 90
0
 to the crystal 

optic axis is called ‘critical phase matching’ [31][32][33][34]. In a uniaxial medium, the power flow of the e-

wave is not along the direction of k. Thus as the fundamental (o-wave) and the second harmonic propagate along 

the crystal, the power generated in the second harmonic will separate from the fundamental leading to what is 

referred to as ‘walk off’. For phase matching at m = 90
0
,  =0 and there is no walk off. Hence when possible, 

90
0 

phase matching is desirable. This is referred to as ‘noncritical phase matching’ [31][32][33][34]. According 

to Desmond Smith [5], having chosen a particular phase-matching geometry, which can then determine the 

value of deff .  

 

IV. Calculation of Phase-Matching Angle in Biaxial Crystals: 
For biaxial crystals the dependence or refractive indices on the light propagation direction and its 

polarization corresponds to a much more complex surface than for uniaxial crystals. The surface has a bilayer 

structure with four points of interlayer contact through which two optic axes pass [35]. For simplicity the case of 

light propagation in the principle planexz, xz, and yz. In these planes the dependences of the refractive index on 

the propagation direction of two waves with orthogonal polarizations represent a combination or an ellipse and a 

circle (Figure-3 a, b).  

 
Figure-3 Indicatrices of refractive indices in biaxial crystals 

 

We shall relate crystallophysical (X, Y, Z)and crystallographic (a, b, c) axes in a biaxial crystal in such 

a way that the optic axes, whose directions are given by the intersection points of the ellipse and circle, will 

always be in a plane xz. Consider one of two possible cases: 
zyx nnn  (Figure-3a), where nx, ny, and nz are 

the principal values of the refractive indices. The angle θz formed by one of the optic axes with the axis z can be 

found from the expression 
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(38) 

In the plane xy the refractive index of the wave polarized normally to this plane is constant and equals 

nz, and that of the wave polarized in this plane changes from ny to nx with  varying from 0
0
 to 90

0
. Hence, a 

biaxial crystal with 
zyx nnn   in the plane xy is similar to a negative uniaxial crystal with no = nz and  
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In the plane yz the refractive index of the wave polarized normally to this plane is constant and equals 

nx, whereas for the wave polarized in this plane the refractive index changes form ny to nz with   varying from 

0
0
 to 90

0
. Hence, a biaxial crystal with 

zyx nnn   in the plane yz is similar to a positive uniaxial crystal 

with no = nx and 
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We can also see that in the plane yz at >θz a biaxial crystal with 
zyx nnn   is similar to a positive 

uniaxial crystal and, at <θz, to a negative uniaxial crystal. A biaxial crystal with 
zyx nnn   is considered in 

a similar way (Figure-3b).  Here the angle θz between the optic axis and the axis z is expressed as 
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The biaxial crystal is said to be optically positive if the bisectrix of the acute angle between optic axes 

coincides with nmax and optically negative if the bisectrix coincides with nmin. Hobden [31] give a general 

approach to calculation of phase-matching angles in biaxial crystals. 

 

V. Nonlinear Optical Materials 
For generating new frequencies from existing lasers via harmonic generation and difference generation, 

there has been an extensive effort in recent years to identify effective materials for such processes. In addition to 

having a large nonlinearity, these materials must be transparent not only at the laser frequency but also at the 

newly generated frequency. They must (1) be resistant to optical damage, (2) have high mechanical hardness, 

(3) exhibit good thermal and chemical stability, (4) be capable of being grown in useful sizes, and (5) have the 

appropriate phase-matching properties. The second harmonic crystals must have no inversion symmetry (i.e. 

non-centrosymmetric). Bulk second-order nonlinear materials are generally inorganic crystals. A number of 

semiconductors are useful for second harmonic generation when used in waveguides. The nonlinear crystals can 

be classified into two groups according to their physical properties. Crystals grown from water solutions are 

fragile, hygroscopic, and sensitive to thermal shock. The crystals of this group, to which KDP and its isomorphs 

belong, are somewhat difficult to handle because the crystals are soft, and the polished faces may be fogged if 

they are held with bare hands or exposed to humid atmosphere. On the other hand, the crystals are easy to grow, 

they are available in large sizes, and they are of excellent optical quality. Crystals grown from the melt are 

relatively hard, nonhygroscopic and less sensitive to thermal shock. Important members of these group crystals 

are LiNbO3 and Ba2NaNb5O15. The optical quality is usually inferior to water grown crystals because of 

refractive index nonuniformities associated with the crystal growth condition [1][3][29]. 

Potassium titalyl phosphate or KTP (KTiOPO4) [36][37][38][39] is a mm2 biaxial crystal with 

orthorhombic symmetry. KTP is a difficult crystal to grow, and is currently grown by hydrothermal and flux 

growth techniques. However, KTP possesses good optical properties, a large acceptance angle, large 

temperature acceptance, a large nonlinear coefficient, and high optical damage thresholds. It is a mechanically 

rugged and nonhygroscopic crystal. However KTP suffers from cumulative photochemical degradation 

phenomena, termed grey tracking, caused by long-term exposure to the intense fundamental and second 

harmonic radiation. Although this photochemical effect can be reversed by operating the crystal at an elevated 

temperature, absorption in the crystal due to the grey tracking may damage the crystal beyond repair. KTP is a 

more recently developed crystal than KDP or LiNbO3, but is emerging as one of the most popular frequency-

doubling crystals for Nd:YAG and Nd:glass lasers. KTP is also finding application as an OPO material and in 

difference frequency application. 

 

Table-1 Properties of some important nonlinear crystals
6
 

Property KTP BBO LBO CLBO 

Nonlinear coefficient (pm/V) 3.1 1.94 1.16 1.11 

Transmission range (m) 0.35 - 5.5 0.19 - 3.5 0.16 – 2.6 0.16 – 2.6 

Damage threshold (GW/cm
2
) > 0.5 1.5 2.5 > 2.5 
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Angular acceptance (mrad-cm) 20 < 1 2 1.4 

Spectral acceptance (mm-cm) 0.5 0.5 0.8 1 

Walk-off angle (degree) 1.3 5.5 <1 1.8 

Damage resistance to moisture High Low Low Medium 

 

Table-2 Parameters of nonlinear crystals for critically phase matched second harmonic generation
2 

Property -

BaB2O4 

KNbO3 KTiOPO4 LiB3O

5 

LiNbO

3 

LiIO

3 

Type  I I II II I I 

deff  (pm / V) 2.1 11.2 3.3 0.7 5.0 1.9 

Angular bandwidth  (mrad-cm)
* 

0.7 0.5 1.7 25.0 0.9 0.5 

Spectral bandwidth   (cm
-1

cm)
* 

35 3.9 9.6 200 4.8 9.5 

Damage threshold (J cm
-2

) at 1064 

nm 

13 2 15 25 10 1 

*
Angular and spectral bandwidths correspond to the ranges over which phase mismatch varies from –π to + π 

 
Table-3 Nonlinear optical coefficients for primary materials

5
 

 

 

Material 

 

Formula 

Relative 

nonlinear 

coefficient 

d/d36 

(KDP) 

  Nonlinear 

coefficient
a 

[10
-24

 As/V
2
] 

Index of 

refraction  

 n
o
 

(1.06m) 

Ammonium dihydrogen phosphate (ADP) NH4H2PO4 1.2 d36 =5.96 1.50 

Potassium dihydrogen phosphate (KDP) KH2PO4 1.0 d36 =5.16 1.49 

Potassium dideuterium phosphate KD2PO4 1.06 d36 =5.43 1.47 

Rubidium dihydrogen phosphate   (KD*P) RbH2PO4 0.92 d36 =3.81 1.49 

Rubidium dihydrogen arsenate   (RDA) RbH2AsO4 0.64 d36 =2.66 1.55 

Cesium dihydrogen arsenate     (CDA) CsH2AsO4 0.92 d36 =3.81 1.55 

Cesium dideuterium arsenate   (CD*A) CsD2AsO4 0.92 d36 =3.81 1.55 

Lithium iodate LilO3 15.0 d31 =58.4 1.86 

Lithium niobate LiNbO3 13.4 d31 =55.8 2.23 

Barium sodium niobate Ba2NaNb5O1

5 

38.0 d31 =159.4 2.26 

         a
Absolute value of nonlinear coefficients is based on d36 (KDP) = 1.15  10

-9
 [esu]. 

       Conversion: d [As/V
2
] = 8.855 15  10

-12
d [m/V] = 3.68  10

-15
d [esu] 

 
VI. Conclusion 

The OPO used here  employed a KTP crystal as the non-linear element. The KTP crystal is 

antireflection coated at both the pump and OPO waves. KTP exhibits effective non-linear coefficient and high 

damage threshold (around 11 MW /cm
2
), and has a relatively wide acceptance angle. The OPO consists of a 15 

× 10 × 10 mm KTP crystal was placed within the 4.5 cm OPO resonator consisting plane mirrors M3 and M4. 

Mirror M3 is highly reflective (100 %) for the signal wavelength, while mirror M4 is 85 % reflective for the 

signal wavelength and highly reflective for pump and idler wavelengths. The KTP OPO was pumped by this 

1.064 m, diode-pumped Nd:YAG laser with a TEM00 transverse mode. The laser beam is set normal to the z-

axis (c-axis), which indicates  = 90
0
.  The laser output was focused by a 100 cm focal lens. The KTP crystal 

was cut so as to achieve type-II non-critical phase matching x-cut ( = 90
0
 and  =0

0
) as it maximizes effective 

non-linear coefficient and has large angular/thermal acceptance angles, for a pump wavelength of 1.064 m 

(Nd:YAG). Type-II phase matching in KTP is chosen because of a combination of relatively high deff and high 

damage threshold. The effective nonlinear coefficient for the Type-II KTP crystal non-critical-phase-matching 

OPO is given by [22] 

                    
 sin)cossin(2sin2sin)( 2

24

2

151524 dddddeff   

For  = 90
0
 and  = 0

0
, the value of deff= d24. Here  is the angle of propagation with respect to the z-axis and  

is the angle to the x-axis in the x-y plane. An output coupler with a reflectivity of R = 85 % at the signal 

wavelength was used for this measurements. The input pump energy was fixed at 40  0.6 mJ and the pump 

beam had a diameter of 2 mm (1/e
2
 intensity point), a divergence of 0.8 mrad and pulse duration of 15.6 ns. The 

largest signal energy is obtained at the point of normal incidence, at phase matching angle of θ =90
0
 

and=21
0
.For this configuration, the direction of propagation is along x-axis. The polarization of the pump wave 
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and signal wave is along y-axis (o-wave) whereas idler wave is polarized in the x-z plane (e-wave). This 

propagation angle is very close to the value calculated using the Sellmeier coefficient for parametric generation. 

While the beam polarized along the z-axis experience no walk-off, the calculated walk-off angle associated with 

the beams polarized along the fast axis are relatively small. It is difficult to find a signal set of Sellmeier 

coefficients that is accurate throughout the transparency range of a nonlinear crystal and valid for different 
(2)

 

processes. The output energy at 1525 nm is 8 mJ, corresponding to an energy conversion efficiency of 21 %. 

Figure-.4 shows the calculated signal wavelength as a function of phase-matching angle  for  = 0 in type-II 

KTP OPO pumped at 1.064 m. The polarization in the x-z plane (e-wave).The OPO tuning curve, shown in 

Figure-5.4, making the output wavelengths quite insensitive to rotation of the crystal. In practice the crystal 

could be rotated by 3 degrees with no measurable change in the output wavelength (angstrom resolution). In the 

non-critically phase-matched configuration the refractive indices are ns = 1.73, np = 1.73, and ni = 1.82. The 

round trip loss of the OPO crystal is 2l = 0.01, included losses due to the optical coatings on the crystal faces. 

The mode-coupling coefficient gs is approximately unity at threshold. In the present case of non-critical phase 

matching, the walk-off is negligible. 

For pump wavelength of 1064 nm, it generates a signal wave at 1525 nm and idler beam at 2130 nm. 

The input and output faces of the KTP crystal were antireflection coated at 1064 nm and 1525 nm. For low 

divergence output beam, a plane parallel resonator configuration was employed for OPO cavity. The OPO 

conversion efficiency depends on the intensity of the pump beam inside the crystal. For focusing the pump laser 

beam (1064 nm) inside the crystal a convex lens of focal length 100 cm was employed. The focused pump beam 

spot size within the crystal was measured to be 2  0.1 mm. The focusing lenses reduce the diameter of the 

pump beam that has a Gaussian-like spatial profile almost in a 1.6-mm-diameter beam (1/e
2
 intensity point) with 

a divergence of 0.8 mrad. The OPO output principally is a signal beam at 1525 nm, it is also detected other 

harmonics for different orientations. This wavelength is beyond the ocular region, thus the output laser is safe 

for eye. The OPO output with centre wavelength of signal at 1525 nm was measured employing a sensor based 

energy meter. For measuring the pulse width of the pump source, a photodetector was placed behind the rear 

mirrors M2 and M4 to record the temporal profile of pump pulse. The signal and idler wavelengths can also be 

measured by using the grating monochromator set for approximately 0.2 nm resolution. 

 

 
Figure-4 Schematic diagram for the Nd:YAG eye safe laser system 
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